Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cholinesterase and paraoxonase (PON1) enzyme activities in Mexican–American mothers and children from an agricultural community

Abstract

Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican–American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community. We used Wilcoxon signed-rank tests to compare enzymatic activities among mothers and their children, and analysis of variance to identify factors associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were only statistically significant for the paraoxon substrate. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared with their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (body mass index Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age 9 years, PON1 activities approach adult levels, and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. CDPR. 2011 (California Department of Pesticide Regulation) Pesticide Use Reporting Data for 2009. California Pesticide Information Portal. Available: http://calpip.cdpr.ca.gov/main.cfm(Accessed 18 July 2011). 1974.

  2. Adgate J.L., Barr D.B., Clayton C.A., Eberly L.E., Freeman N.C., and Lioy P.J., et al. Measurement of children's exposure to pesticides: analysis of urinary metabolite levels in a probability-based sample. Environ Health Perspect 2001: 109 (6): 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bradman A., Barr D.B., Claus Henn B.G., Drumheller T., Curry C., and Eskenazi B. Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 2003: 111 (14): 1779–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu C., Fenske R.A., Simcox N.J., and Kalman D. Pesticide exposure of children in an agricultural community: evidence of household proximity to farmland and take home exposure pathways. Environ Res 2000: 84 (3): 290–302.

    Article  CAS  PubMed  Google Scholar 

  5. McCauley L.A., Lasarev M.R., Higgins G., Rothlein J., Muniz J., and Ebbert C., et al. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach. Environ Health Perspect 2001: 109 (5): 533–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Rourke M.K., Lizardi P.S., Rogan S.P., Freeman N.C., Aguirre A., and Saint C.G. Pesticide exposure and creatinine variation among young children. J Expo Anal Environ Epidemiol 2000: 10 (6 Pt 2): 672–681.

    Article  PubMed  Google Scholar 

  7. Beamer P.I., Canales R.A., Bradman A., and Leckie J.O. Farmworker children's residential non-dietary exposure estimates from micro-level activity time series. Environ Int 2009: 35 (8): 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moya J., Bearer C.F., and Etzel R.A. Children's behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 2004: 113 (4 Suppl): 996–1006.

    PubMed  Google Scholar 

  9. Ginsberg G., Hattis D., and Sonawane B. Incorporating pharmacokinetic differences between children and adults in assessing children's risks to environmental toxicants. Toxicol Appl Pharmacol 2004: 198 (2): 164–183.

    Article  CAS  PubMed  Google Scholar 

  10. Campbell C.G., Seidler F.J., and Slotkin T.A. Chlorpyrifos interferes with cell development in rat brain regions. Brain Res Bull 1997: 43 (2): 179–189.

    Article  CAS  PubMed  Google Scholar 

  11. Eskenazi B., Bradman A., and Castorina R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 1999: 107 (Suppl 3): 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouchard M.F., Chevrier J., Harley K.G., Kogut K., Vedar M., and Calderon N., et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year old children. Environ Health Perspect 2011: 119 (8): 1189–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engel S.M., Wetmur J., Chen J., Zhu C., Barr D.B., and Canfield R.L., et al. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 2011: 119 (8): 1182–1188.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marks A.R., Harley K., Bradman A., Kogut K., Barr D.B., and Johnson C., et al. Organophosphate pesticide exposure and attention in young Mexican-American children: the CHAMACOS study. Environ Health Perspect 2011: 118 (12): 1768–1774.

    Article  Google Scholar 

  15. Rauh V., Arunajadai S., Horton M., Perera F., Hoepner L., and Barr D.B., et al. 7-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect 2011: 119 (8): 1196–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cole T.B., Jampsa R.L., Walter B.J., Arndt T.L., Richter R.J., and Shih D.M., et al. Expression of human paraoxonase (PON1) during development. Pharmacogenetics 2003: 13 (6): 357–364.

    Article  CAS  PubMed  Google Scholar 

  17. Eskenazi B., Harley K., Bradman A., Weltzien E., Jewell N.P., and Barr D.B., et al. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 2004: 112 (10): 1116–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chambers J.E., Meek E.C., and Ross M. The metabolic activation and detoxification of anticholinesterase insecticides. In: Satoh T., and Gupta R.C. (eds). Anticholinesterase Pesticides: Metabolism, Neurotoxicity, and Epidemiology 1st edn. John Wiley and Sons: Hoboken, NJ, 2011, pp. 77–84.

    Chapter  Google Scholar 

  19. Kobayashi H., Yuyama A., and Chiba K. Cholinergic system of brain tissue in rats poisoned with the organophosphate, 0,0-dimethyl 0-(2,2-dichlorovinyl) phosphate. Toxicol Appl Pharmacol 1986: 82 (1): 32–39.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi H., Yuyama A., Ohkawa T., and Kajita T. Effect of single or chronic injection with a carbamate, propoxur, on the brain cholinergic system and behavior of mice. Jpn J Pharmacol 1988: 47 (1): 21–27.

    Article  CAS  PubMed  Google Scholar 

  21. Robitzki A., Mack A., Hoppe U., Chatonnet A., and Layer P.G. Regulation of cholinesterase gene expression affects neuronal differentiation as revealed by transfection studies on reaggregating embryonic chicken retinal cells. Eur J Neurosci 1997: 9 (11): 2394–2405.

    Article  CAS  PubMed  Google Scholar 

  22. Willbold E., and Layer P.G. Butyrylcholinesterase regulates laminar retinogenesis of the chick embryo in vitro. Eur J Cell Biol 1994: 64 (1): 192–199.

    CAS  PubMed  Google Scholar 

  23. Layer P.G., Allebrandt K., Andermann P., Bodur E., Boopathy R., and Bytyqi A.H., et al. On the multifunctionality of cholinesterases. Chem Biol Interact 2005: 157-158: 37–41.

    Article  CAS  PubMed  Google Scholar 

  24. Martos E.R, Ruz R.F.J., Valle J.M., Gascon L.F., Bermudo G.F., and Canete E.R. [High levels of alanine aminotransferase and cholinesterase in obese pre-pubertal children: correlation with basal insulin concentration and anthropometric measures]. An Esp Pediatr 2000: 53 (4): 330–334.

    Article  Google Scholar 

  25. Duysen E.G., Li B., Xie W., Schopfer L.M., Anderson R.S., and Broomfield C.A., et al. Evidence for nonacetylcholinesterase targets of organophosphorous nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 2001: 299 (2): 528–535.

    CAS  PubMed  Google Scholar 

  26. Li B., Stribley J.A., Ticu A., Xie W., Schopfer L.M., and Hammond P., et al. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 2000: 75 (3): 1320–1331.

    Article  CAS  PubMed  Google Scholar 

  27. Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., and Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol 1993: 45 (12): 2465–2474.

    Article  CAS  PubMed  Google Scholar 

  28. Masson P., and Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 2010: 494 (2): 107–120.

    Article  CAS  PubMed  Google Scholar 

  29. Timchalk C. Biomonitoring of pesticides: pharmacokinetics of organophosphorous and carbamate insecticides. In: Satoh T., and Gupta R.C. (eds). Anticholinesterase Pesticides: Metabolism, Neurotoxicity, and Epidemiology 1st edn. John Wiley and Sons: Hoboken, NJ, 2011, pp. 267–287.

    Chapter  Google Scholar 

  30. Camps J., Marsillach J., and Joven J. The paraoxonases: role in human diseases and methodological difficulties in measurement. Crit Rev Clin Lab Sci 2009: 46 (2): 83–106.

    Article  CAS  PubMed  Google Scholar 

  31. Costa L.G., and Furlong C.E. Paraoxonase 1: structure, function, and polymorphisms. In: Satoh T., and Gupta R.C. (eds). Anticholinesterase Pesticides: Metabolism, Neurotoxicity, and Epidemiology 1st edn. John Wiley and Sons: Hoboken, NJ, 2011 pp. 85–95.

    Chapter  Google Scholar 

  32. Harley K.G., Huen K., Schall R.A., Holland N.T., Bradman A., and Barr D.B., et al. Association of organophosphate pesticide exposure and paraoxonase with birth outcome in Mexican-American women. PLoS One 2011: 6 (8): e23923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Araoud M., Neffeti F., Douki W., Najjar M.F., and Kenani A. Paraoxonase 1 correlates with butyrylcholinesterase and gamma glutamyl transferase in workers chronically exposed to pesticides. J Occup Health 2010: 52 (6): 383–388.

    Article  CAS  PubMed  Google Scholar 

  34. Benmoyal-Segal L., Vander T., Shifman S., Bryk B., Ebstein R.P., and Marcus E.L., et al. Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson's disease. FASEB J 2005: 19 (3): 452–454.

    Article  CAS  PubMed  Google Scholar 

  35. Bryk B., BenMoyal-Segal L., Podoly E., Livnah O., Eisenkraft A., and Luria S., et al. Inherited and acquired interactions between ACHE and PON1 polymorphisms modulate plasma acetylcholinesterase and paraoxonase activities. J Neurochem 2005: 92 (5): 1216–1227.

    Article  CAS  PubMed  Google Scholar 

  36. Hofmann J.N., Keifer M.C., Furlong C.E., De Roos A.J., Farin F.M., and Fenske R.A., et al. Serum cholinesterase inhibition in relation to paraoxonase-1 (PON1) status among organophosphate-exposed agricultural pesticide handlers. Environ Health Perspect 2009: 117 (9): 1402–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradman A., Castorina R., Barr D.B., Chevrier J., Harnly M.E., and Eisen E.A., et al. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health 2011: 8 (4): 1061–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holland N., Furlong C., Bastaki M., Richter R., Bradman A., and Huen K., et al. Paraoxonase polymorphisms, haplotypes, and enzyme activity in Latino mothers and newborns. Environ Health Perspect 2006: 114 (7): 985–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huen K., Barcellos L., Beckman K., Rose S., Eskenazi B., and Holland N. Effects of PON polymorphisms and haplotypes on molecular phenotype in Mexican-American mothers and children. Environ Mol Mutagen 2010a: 52 (2): 105–116.

    Article  Google Scholar 

  40. Eskenazi B., Mocarelli P., Warner M., Chee W.Y., Gerthoux P.M., and Samuels S., et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect 2003: 111 (7): 947–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. National Center for Health Statistics.. CDC Growth Charts. National Center for Health Statistics: United States, 2005.

  42. Huen K., Richter R., Furlong C., Eskenazi B., and Holland N. Validation of PON1 enzyme activity assays for longitudinal studies. Clin Chim Acta 2009: 402 (1-2): 67–74.

    Article  CAS  PubMed  Google Scholar 

  43. Furlong C.E., Holland N., Richter R.J., Bradman A., Ho A., and Eskenazi B. PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharmacogenet Genomics 2006: 16 (3): 183–190.

    CAS  PubMed  Google Scholar 

  44. Connelly P.W., Maguire G.F., Picardo C.M., Teiber J.F., and Draganov D. Development of an immunoblot assay with infrared fluorescence to quantify paraoxonase 1 in serum and plasma. J Lipid Res 2008: 49 (1): 245–250.

    Article  CAS  PubMed  Google Scholar 

  45. Kujiraoka T., Oka T., Ishihara M., Egashira T., Fujioka T., and Saito E., et al. A sandwich enzyme-linked immunosorbent assay for human serum paraoxonase concentration. J Lipid Res 2000: 41 (8): 1358–1363.

    CAS  PubMed  Google Scholar 

  46. Wilson B.W., Henderson J.D., Ramirez A., and O’Malley M.A. Standardization of clinical cholinesterase measurements. Int J Toxicol 2002: 21 (5): 385–388.

    Article  CAS  PubMed  Google Scholar 

  47. Ellman G.L., Courtney K.D., Andres Jr V., and Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961: 7: 88–95.

    Article  CAS  PubMed  Google Scholar 

  48. Huen K., Harley K., Bradman A., Eskenazi B., and Holland N. Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes. Toxicol Appl Pharmacol 2010b: 244 (2): 181–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burman D. Red cell cholinesterase in infancy and childhood. Arch Dis Child 1961: 36: 362–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Peyster A., Willis W.O., and Liebhaber M. Cholinesterase activity in pregnant women and newborns. J Toxicol Clin Toxicol 1994: 32 (6): 683–696.

    Article  CAS  PubMed  Google Scholar 

  51. Clark Jr L.C., and Beck E. The acetylcholinesterase activity of erythrocytes of growing children. Child Dev 1950: 21 (3): 163–167.

    CAS  PubMed  Google Scholar 

  52. Hutchinson A.O., and Widdowson E.M. Cholinesterase activities in the serum of healthy British children. Nature 1952: 169 (4294): 284–285.

    Article  CAS  PubMed  Google Scholar 

  53. Simpson N.E., and Kalow W. Serum cholinesterase levels in families and twins. Am J Hum Genet 1963: 15: 280–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McCance R.A., Hutchinson A.O., Dean R.F., and Jones P.E.H. The cholinesterase activity of the serum on newborn animals, and of colostrum. Biochem J 1949: 45 (4): 493–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sperling L.E., Steinert G., Boutter J., Landgraf D., Hescheler J., and Pollet D., et al. Characterisation of cholinesterase expression during murine embryonic stem cell differentiation. Chem Biol Interact 2008: 175 (1-3): 156–160.

    Article  CAS  PubMed  Google Scholar 

  56. Rosas L.G., Guendelman S., Harley K., Fernald L.C., Neufeld L., and Mejia F., et al. Factors associated with overweight and obesity among children of Mexican descent: results of a binational study. J Immigr Minor Health/Center for Minority Public Health 2011: 13 (1): 169–180.

    Article  Google Scholar 

  57. Iwasaki T., Yoneda M., Nakajima A., and Terauchi Y. Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 2007: 46 (19): 1633–1639.

    Article  PubMed  Google Scholar 

  58. Chu M.I., Fontaine P., Kutty K.M., Murphy D., and Redheendran R. Cholinesterase in serum and low density lipoprotein of hyperlipidemic patients. Clin Chim Acta 1978: 85 (1): 55–59.

    Article  CAS  PubMed  Google Scholar 

  59. Inacio Lunkes G., Stefanello F., Sausen Lunkes D., Maria Morsch V., Schetinger M.R., and Goncalves J.F. Serum cholinesterase activity in diabetes and associated pathologies. Diabetes Res Clin Pract 2006: 72 (1): 28–32.

    Article  PubMed  Google Scholar 

  60. Kutty K.M., Jain R., Huang S., and Kean K. Serum pseudocholinesterase: high density lipoprotein cholesterol ratio as an index of risk for cardiovascular disease. Clin Chim Acta 1981: 115 (1): 55–61.

    Article  CAS  PubMed  Google Scholar 

  61. Alcantara V.M., Oliveira L.C., Rea R.R., Suplicy H.L., and Chautard-Freire-Maia E.A. Butyrylcholinesterase activity and metabolic syndrome in obese patients. Clin Chem Lab Med 2005: 43 (3): 285–288.

    Article  CAS  PubMed  Google Scholar 

  62. Annapurna V., Senciall I., Davis A.J., and Kutty K.M. Relationship between serum pseudocholinesterase and triglycerides in experimentally induced diabetes mellitus in rats. Diabetologia 1991: 34 (5): 320–324.

    Article  CAS  PubMed  Google Scholar 

  63. Li B., Duysen E.G., and Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact 2008: 175 (1-3): 88–91.

    Article  CAS  PubMed  Google Scholar 

  64. Waterlow J.C. Enzyme changes in malnutrition. J Clin Pathol Suppl (Assoc Clin Pathol) 1970: 4: 75–79.

    Article  CAS  Google Scholar 

  65. Slotkin T.A. Does early-life exposure to organophosphate insecticides lead to prediabetes and obesity? Reprod Toxicol 2010: 31 (3): 297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  66. De Vriese C., Gregoire F., Lema-Kisoka R., Waelbroeck M., Robberecht P., and Delporte C. Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology 2004: 145 (11): 4997–5005.

    Article  CAS  PubMed  Google Scholar 

  67. De Vriese C., Hacquebard M., Gregoire F., Carpentier Y., and Delporte C. Ghrelin interacts with human plasma lipoproteins. Endocrinology 2007: 148 (5): 2355–2362.

    Article  CAS  PubMed  Google Scholar 

  68. Shanado Y., Kometani M., Uchiyama H., Koizumi S., and Teno N. Lysophospholipase I identified as a ghrelin deacylation enzyme in rat stomach. Biochem Biophys Res Commun 2004: 325 (4): 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  69. Bradman A., Eskenazi B., Barr D.B., Bravo R., Castorina R., and Chevrier J., et al. Organophosphate urinary metabolite levels during pregnancy and after delivery in women living in an agricultural community. Environ Health Perspect 2005: 113 (12): 1802–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the CHAMACOS staff, community partners, and especially the CHAMACOS participants. We thank Justin Dittmeier for assisting with cholinesterase activity measurements. This work was supported by grants from the US Environmental Protection Agency (R826886, R82670901) and the National Institute of Environmental Health Science (R01ESO12503, PO1 ES009605). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS and the EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Huen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, V., Huen, K., Venkat, S. et al. Cholinesterase and paraoxonase (PON1) enzyme activities in Mexican–American mothers and children from an agricultural community. J Expo Sci Environ Epidemiol 22, 641–648 (2012). https://doi.org/10.1038/jes.2012.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.61

Keywords

This article is cited by

Search

Quick links