Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interpreting variability in population biomonitoring data: Role of elimination kinetics

Abstract

Biomarker concentrations in spot samples of blood and urine are implicitly interpreted as direct surrogates for long-term exposure magnitude in a variety of contexts including (1) epidemiological studies of potential health outcomes associated with general population chemical exposure, and (2) cross-sectional population biomonitoring studies. However, numerous factors in addition to exposure magnitude influence biomarker concentrations in spot samples, including temporal variation in spot samples because of elimination kinetics. The influence of half-life of elimination relative to exposure interval is examined here using simple first-order pharmacokinetic simulations of urinary concentrations in spot samples collected at random times relative to exposure events. Repeated exposures were modeled for each individual in the simulation with exposure amounts drawn from lognormal distributions with varying geometric standard deviations. Relative variation in predicted spot sample concentrations was greater than the variation in underlying dose distributions when the half-life of elimination was shorter than the interval between exposures, with the degree of relative variation increasing as the ratio of half-life to exposure interval decreased. Results of the modeling agreed well with data from a serial urine collection data set from the Centers for Disease Control. Data from previous studies examining intra-class correlation coefficients for a range of chemicals relying upon repeated sampling support the importance of considering the half-life relative to exposure frequency in design and interpretation of studies using spot samples for exposure classification and exposure estimation. The modeling and data sets presented here provide tools that can assist in interpretation of variability in cross-sectional biomonitoring studies and in design of studies utilizing biomonitoring data as markers for exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sexton K., Needham L.L., and Pirkle J.L. Human biomonitoring of environmental chemicals. Am Scientist 2004: 92: 38–45.

    Article  Google Scholar 

  2. Lakind J.S., and Naiman D.Q. Daily intake of bisphenol A and potential sources of exposure: 2005-2006 National Health and Nutrition Examination Survey. J Exp Sci Environ Epi 2011: 21 (3): 272–279.

    Article  CAS  Google Scholar 

  3. Calafat A.M., and McKee R.H. Integrating biomonitoring exposure data into the risk assessment process: phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study. Environ Health Persp 2006: 114 (11): 1783–1789.

    Article  CAS  Google Scholar 

  4. Wittassek M., Koch H.M., Angerer J., and Bruning T. Assessing exposure to phthalates - the human biomonitoring approach. Molecular Nutr Food Res 2011: 55 (1): 7–31.

    Article  CAS  Google Scholar 

  5. Clewell H.J., Tan Y.M., Campbell J.L., and Andersen M.E. Quantitative interpretation of human biomonitoring data. Toxicol Appl Pharmacol 2008: 231 (1): 122–133.

    Article  CAS  Google Scholar 

  6. Kohn M.C., Parham F., Masten S.A., Portier C.J., Shelby M.D., and Brock J.W., et al. Human exposure estimates for phthalates. Environ Health Persp 2000: 108 (10): A440–A442.

    Article  CAS  Google Scholar 

  7. Preau Jr J.L., Wong L.Y., Silva M.J., Needham L.L., and Calafat A.M. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environ Health Persp 2010: 118 (12): 1748–1754.

    Article  CAS  Google Scholar 

  8. Ye X., Wong L.Y., Bishop A.M., and Calafat A.M. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environ Health Persp 2011: 119 (7): 983–988.

    Article  CAS  Google Scholar 

  9. Teeguarden J.G., Calafat A.M., Ye X., Doerge D.R., Churchwell M.I., and Gunawan R., et al. Twenty-four hour human urine and serum profiles of bisphenol a during high-dietary exposure. Toxicol Sci 2011: 123 (1): 48–57.

    Article  CAS  Google Scholar 

  10. Li Z., Romanoff L.C., Lewin M.D., Porter E.N., Trinidad D.A., and Needham L.L., et al. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. J Exp Sci Environ Epi 2010: 20 (6): 526–535.

    Article  CAS  Google Scholar 

  11. Ott W.R. A physical explanation of the lognormality of pollutant concentrations. J Air Waste Management Assoc 1990: 40 (10): 1378–1383.

    Article  CAS  Google Scholar 

  12. Koch H.M., Bolt H.M., Preuss R., and Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 2005: 79 (7): 367–376.

    Article  CAS  Google Scholar 

  13. Volkel W., Kiranoglu M., and Fromme H. Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment. Toxicol Let 2008: 179 (3): 155–162.

    Article  Google Scholar 

  14. Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services. Atlanta, GA, Available at: http://www.cdc.gov/exposurereport/[Accessed 5 January 2010] 2009.

  15. Spaan S., Fransman W., Warren N., Cotton R., Cocker J., and Tielemans E. Variability of biomarkers in volunteer studies: the biological component. Toxicol Let 2010: 198 (2): 144–151.

    Article  CAS  Google Scholar 

  16. Mage D.T., Allen R.H., and Kodali A. Creatinine corrections for estimating children's and adult's pesticide intake doses in equilibrium with urinary pesticide and creatinine concentrations. J Expo Sci Environ Epidemiol 2008: 18 (4): 360–368.

    Article  CAS  Google Scholar 

  17. Mage D.T., Allen R.H., Gondy G., Smith W., Barr D.B., and Needham L.L. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). J Expo Anal Environ Epidemiol 2004: 14 (6): 457–465.

    Article  CAS  Google Scholar 

  18. van Haarst E.P., Heldeweg E.A., Newling D.W., and Schlatmann T.J. The 24-h frequency-vlume chart in adults reporting no voiding complaints: defining reference values and analysing variables. Br J Urol Int 2004: 93: 1257–1261.

    Article  CAS  Google Scholar 

  19. Rosner B. Fundamentals of Biostatistics. Duxbury: Pacific Grove, CA, 2000.

    Google Scholar 

  20. Adibi J.J., Whyatt R.M., Williams P.L., Calafat A.M., Camann D., and Herrick R., et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Persp 2008: 116 (4): 467–473.

    Article  CAS  Google Scholar 

  21. Teitelbaum S.L., Britton J.A., Calafat A.M., Ye X., Silva M.J., and Reidy J.A., et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res 2008: 106 (2): 257–269.

    Article  CAS  Google Scholar 

  22. Kile M.L., Hoffman E., Hsueh Y.M., Afroz S., Quamruzzaman Q., and Rahman M., et al. Variability in biomarkers of arsenic exposure and metabolism in adults over time. Environ Health Persp 2009: 117 (3): 455–460.

    Article  CAS  Google Scholar 

  23. Rivera-Nunez Z., Meliker J.R., Linder A.M., and Nriagu J.O. Reliability of spot urine samples in assessing arsenic exposure. Int J Hyg Environ Health 2010: 213 (4): 259–264.

    Article  CAS  Google Scholar 

  24. Poulin P., Jones R.D.O., Jones H.M., Gibson C.R., Rowland M., and Chien J.Y., et al. PHRMA CPCDC intitiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentratin-time profiles in human by using the physiologically-based pharmacokinetic modeling approach. J Pharmaceutical Sci 2011: 100 (10): 4127–4157.

    Article  CAS  Google Scholar 

  25. Koch H.M., Bolt H.M., and Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol. 2004: 78 (3): 123–130.

    Article  CAS  Google Scholar 

  26. Aylward L.L., LaKind J.S., and Hays S.M. Biomonitoring equivalents (BE) dossier for trihalomethanes. Regul Toxicol Pharmacol 2008: 51 (3 Suppl): S68–S77.

    Article  CAS  Google Scholar 

  27. Kuijsten A., Arts I.C., Vree T.B., and Hollman P.C. Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr 2005: 135 (4): 795–801.

    Article  CAS  Google Scholar 

  28. Lorber M. Use of a simple pharmacokinetic model to characterize exposure to perchlorate. J Exp Sci Environ Epi 2009: 19 (3): 260–273.

    Article  CAS  Google Scholar 

  29. Shelnutt S.R., Cimino C.O., Wiggins P.A., and Badger T.M. Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiol Biomarkers Prev 2000: 9 (4): 413–419.

    CAS  PubMed  Google Scholar 

  30. Metzner J.E., Frank T., Kunz I., Burger D., and Riegger C. Study on the pharmacokinetics of synthetic genistein after multiple oral intake in post-menopausal women. Arzneimittelforschung. 2009: 59 (10): 513–520.

    CAS  PubMed  Google Scholar 

  31. Sandborgh-Englund G., Adolfsson-Erici M., Odham G., and Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health Part A 2006: 69 (20): 1861–1873.

    Article  CAS  Google Scholar 

  32. Chandler H.A., Archbold G.P., Gibson J.M., O’Callaghan P., Marks J.N., and Pethybridge R.J. Excretion of a toxic dose of thallium. Clin Chem 1990: 36 (8 Part 1): 1506–1509.

    CAS  PubMed  Google Scholar 

  33. Hays S.M., and Aylward L.L. Biomonitoring equivalents (BE) dossier for acrylamide (AA) (CAS No 79-06-1). Regul Toxicol Pharmacol 2008: 51 (3 Suppl): S57–S67.

    Article  CAS  Google Scholar 

  34. Flesch-Janys D., Becher H., Gurn P., Jung D., Konietzko J., and Manz A., et al. Elimination of polychlorinated dibenzo-p-dioxins and dibenzofurans in occupationally exposed persons. J Toxicol Environ Health 1996: 47 (4): 363–378.

    Article  CAS  Google Scholar 

  35. Seals R., Bartell S.M., and Steenland K. Accumulation and clearance of perfluorooctanoic acid (PFOA) in current and former residents of an exposed community. Environ Health Persp 2011: 119 (1): 119–124.

    Article  CAS  Google Scholar 

  36. Brown Jr J.F., Lawton R.W., and Morgan C.B. PCB metabolism, persistence, and health effects after occupational exposure: implications for risk assessment. Chemosphere 1994: 29 (9-11): 2287–2294.

    Article  CAS  Google Scholar 

  37. Arakawa C., Fujimaki K., Yoshinaga J., Imai H., Serizawa S., and Shiraishi H. Daily urinary excretion of bisphenol A. Environ Health Prev Med 2004: 9 (1): 22–26.

    Article  CAS  Google Scholar 

  38. Baird D.D., Saldana T.M., Nepomnaschy P.A., Hoppin J.A., Longnecker M.P., and Weinberg C.R., et al. Within-person variability in urinary phthalate metabolite concentrations: measurements from specimens after long-term frozen storage. J Exp Sci Environ Epi 2010: 20 (2): 169–175.

    Article  CAS  Google Scholar 

  39. Braun J.M., Kalkbrenner A.E., Calafat A.M., Bernert J.T., Ye X., and Silva M.J., et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Persp 2011: 119 (1): 131–137.

    Article  CAS  Google Scholar 

  40. Fromme H., Bolte G., Koch H.M., Angerer J., Boehmer S., and Drexler H., et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health 2007: 210 (1): 21–33.

    Article  CAS  Google Scholar 

  41. Hauser R., Meeker J.D., Park S., Silva M.J., and Calafat A.M. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Persp 2004: 112 (17): 1734–1740.

    Article  CAS  Google Scholar 

  42. Hoppin J.A., Brock J.W., Davis B.J., and Baird D.D. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Persp 2002: 110 (5): 515–518.

    Article  CAS  Google Scholar 

  43. Kissel J.C., Curl C.L., Kedan G., Lu C., Griffith W., Barr D.B., Needham L.L., and Fenske R.A. Comparison of organophosphorus pesticide metabolite levels in single and multiple daily urine samples collected from preschool children in Washington State. J Expo Anal Environ Epidemiol. 2005: 15 (2): 164–171.

    Article  CAS  Google Scholar 

  44. Mahalingaiah S., Meeker J.D., Pearson K.R., Calafat A.M., Ye X., and Petrozza J., et al. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Persp 2008: 116 (2): 173–178.

    Article  CAS  Google Scholar 

  45. Meeker J.D., Barr D.B., Ryan L., Herrick R.F., Bennett D.H., and Bravo R., et al. Temporal variability of urinary levels of nonpersistent insecticides in adult men. J Exp Anal Environ Epi 2005: 15 (3): 271–281.

    Article  CAS  Google Scholar 

  46. Nepomnaschy P.A., Baird D.D., Weinberg C.R., Hoppin J.A., Longnecker M.P., and Wilcox A.J. Within-person variability in urinary bisphenol A concentrations: measurements from specimens after long-term frozen storage. Environ Res 2009: 109 (6): 734–737.

    Article  CAS  Google Scholar 

  47. Peck J.D., Sweeney A.M., Symanski E., Gardiner J., Silva M.J., and Calafat A.M., et al. Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong women of reproductive age. J Exp Sci Environ Epi 2010: 20 (1): 90–100.

    Article  CAS  Google Scholar 

  48. Scher D.P., Alexander B.H., Adgate J.L., Eberly L.E., Mandel J.S., and Acquavella J.F., et al. Agreement of pesticide biomarkers between morning void and 24-h urine samples from farmers and their children. J Exp Sci Environ Epi 2007: 17 (4): 350–357.

    Article  CAS  Google Scholar 

  49. Sexton K., Adgate J.L., Church T.R., Ashley D.L., Needham L.L., and Ramachandran G., et al. Children's exposure to volatile organic compounds as determined by longitudinal measurements in blood. Environ Health Persp 2005: 113 (3): 342–349.

    Article  CAS  Google Scholar 

  50. Sexton K., and Ryan A.D. Using exposure biomarkers in children to compare between-child and within-child variance and calculate correlations among siblings for multiple environmental chemicals. J Exp Sci Environ Epi 2011.

Download references

Acknowledgements

Funding for this work was provided by the Long-Range Research Initiative of the American Chemistry Council. The authors carried out the analyses with no input from the funding organization and had complete freedom to design, execute, analyze, and report the results of their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesa L Aylward.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aylward, L., Kirman, C., Adgate, J. et al. Interpreting variability in population biomonitoring data: Role of elimination kinetics. J Expo Sci Environ Epidemiol 22, 398–408 (2012). https://doi.org/10.1038/jes.2012.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.35

Keywords

This article is cited by

Search

Quick links