Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Review Article

A brief history of antibiotics and select advances in their synthesis

Abstract

The advent of modern antibiotics contributed enormously to the dramatic extension of human lifespan since their discovery by virtue of their lethal and selective action against pathogenic microbes. And yet despite our powerful arsenal of weapons against these pathogens, the war against them has not been won. And it may never be. Drug resistance is still menacing the society with many lives being lost due to deadly infections caused by continuously evolving strains spread beyond our means to eradicate them or prevent their spreading. Herein, the emergence and evolution of antibiotics is briefly reviewed, and a select number of total syntheses of naturally occurring antibiotics from the authors’ laboratories are highlighted. The article concludes with a strong endorsement of the current efforts to intensify our fight against these dangerous pathogens with the hope that, this time, these initiatives will be sufficiently focused and serious enough so as to achieve our set goals of, at least, being prepared and ahead of them as part of our drive to improve humanity’s healthcare and wellbeing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

References

  1. 1

    Vuillemin, J. P. Antibiose et symbiose. Assoc. Franc. pour l'Avanc. Sci. 2, 525–543 (1890).

    Google Scholar 

  2. 2

    Bentley, R., Bennett, J. W. in Advances in applied microbiology, Vol. 52 (eds Laskin, A. I., Bennett, J. W. & Gadd, G. M. 303–331 Academic Press, Cambridge, MA, USA, (2003).

  3. 3

    Wallenfels, K. Symbiose und antibiose. Angew. Chem. 58, 1–16 (1945).

    CAS  Google Scholar 

  4. 4

    Fracastorius, H. De contagione et contagiosis morbis et curatione, Libri III, Venice, Most Serene Republic of Venice, (1546).

    Google Scholar 

  5. 5

    Henle, F. G. J. in Pathologische Untersuchungen 1–82 Verlag von August Hirschfeld, Berlin, Prussia, (1840).

    Google Scholar 

  6. 6

    Koch, R. Die Aetiologie der Tuberculose. Berl. Klin. Wochenschr. 19, 287–296 (1882).

    Google Scholar 

  7. 7

    Koch, R. Die Aetiologie der Tuberkulose. Mitth. Kais. Gesundheits 2, 1–88 (1884).

    Google Scholar 

  8. 8

    Loeffler, F. Untersuchung über die Bedeutung der Mikroorganismen für die Entstehung der Diphtherie beim Menschen, bei der Taube und beim Kalbe. Mitth. Kais. Gesundheits 2, 421–499 (1884).

    Google Scholar 

  9. 9

    Pacini, F. Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. Gazz. Med. Ital. Toscana (Serie II) 4, 397–401 (1854).

    Google Scholar 

  10. 10

    Gosio, B. Contributo all’etiologia della pellagra. Ricerche chimiche e batteriologiche sulle alterazioni del mais. G. Accad. Med. Torino 61, 464–487 (1893).

    Google Scholar 

  11. 11

    Gosio, B. Ricerche batteriologiche e chimiche sulle alterazioni del mais. Contributo all’etiologia della pellagra. Riv. d'Ig. San. Pubb. 7, 825–849 (1896).

    Google Scholar 

  12. 12

    Silverman Kitchin, J. E., Pomeranz, M. K., Pak, G., Washenik, K. & Shupack, J. L. Rediscovering mycophenolic acid: a review of its mechanism, side effects, and potential uses. J. Am. Acad. Dermatol. 37, 445–449 (1997).

    Google Scholar 

  13. 13

    Alsberg, C. L. & Black, O. F. Contributions to the study of maize deterioration. Biochemical and toxicological investigations of Penicillium puberulum and Penicillium stoloniferum. Bull. US Bur. Pl. Ind. 270, 7–48 (1913).

  14. 14

    Birkinshaw, J. H., Raistrick, H. & Ross, D. J. Studies in the biochemistry of micro-organisms. 86. The molecular constitution of mycophenolic acid, a metabolic product of Penicillium brevi-compactum Dierckx. Part 3. Further observations on the structural formula for mycophenolic acid. Biochem. J. 50, 630–634 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Birch, A. J. & Wright, J. J. A total synthesis of mycophenolic acid. Aust. J. Chem. 22, 2635–2644 (1969).

    CAS  Google Scholar 

  16. 16

    Birch, A. J. & Wright, J. J. A total synthesis of mycophenolic acid. J. Chem. Soc. D 788–789 (1969).

  17. 17

    Wu, J. C. Mycophenolate mofetil: molecular mechanisms of action. Perspect. Drug Discov. Des. 2, 185–204 (1994).

    CAS  Google Scholar 

  18. 18

    Ehrlich, P. & Bertheim, A. Über das salzsaure 3.3′-Diamino-4.4′-dioxy-arsenobenzol und seine nächsten Verwandten. Ber. Dtsch. Chem. Ges. 45, 756–766 (1912).

    CAS  Google Scholar 

  19. 19

    Weigert, C. Ueber Bacterien in der Pockenhaut. Centralbl. f. d. med. Wissensch. Berlin 9, 609–611 (1871).

    Google Scholar 

  20. 20

    Weigert, C. Über eine Mykose bei einem neugeborenen Kinde. Jahresb. d. schles. Gesellsch. f. vaterl. Cultur 53, 229–230 (1876).

    Google Scholar 

  21. 21

    Weigert, C. Bismarckbraun als Färbemittel. Arch. Mikrosk. Anat. 15, 258–260 (1878).

    Google Scholar 

  22. 22

    Weigert, C. Zur Technik der mikroskopischen Bakterienuntersuchungen. Arch. Pathol. Anat. Physiol. Klin. Med. 84, 275–315 (1881).

    Google Scholar 

  23. 23

    Farbwerke vorm. Meister Lucius & Brüning in Höchst Verfahren zur Darstellung von Oxyarylarsenoxyden. Deutsches Reichspatent No. 213594 (1908).

  24. 24

    Farbwerke vorm. Meister Lucius & Brüning in Höchst Verfahren zur Darstellung von Aminoderivaten der Oxyarylarsinsäuren und deren Reduktionsprodukten. Deutsches Reichspatent No. 224953 (1909).

  25. 25

    Farbwerke vorm. Meister Lucius & Brüning in Höchst Verfahren zur Darstellung von Aminooxyarylarsenoxyden. Deutsches Reichspatent No. 235391 (1909).

  26. 26

    Williams, K. The introduction of ‘chemotherapy’ using arsphenamine—the first magic bullet. J. R. Soc. Med. 102, 343–348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Lloyd, N. C., Morgan, H. W., Nicholson, B. K. & Ronimus, R. S. The composition of Ehrlich's Salvarsan: resolution of a century-old debate. Angew. Chem. Int. Ed. 44, 941–944 (2005).

    CAS  Google Scholar 

  28. 28

    Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 10, 226–236 (1929).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Hodgkin, D. C. The X-ray analysis of the structure of penicillin. Adv. Sci. 6, 85–89 (1949).

    CAS  Google Scholar 

  30. 30

    Sheehan, J. C. & Henery-Logan, K. R. The total synthesis of penicillin V. J. Am. Chem. Soc. 79, 1262–1263 (1957).

    CAS  Google Scholar 

  31. 31

    Sheehan, J. C. & Henery-Logan, K. R. The total synthesis of penicillin V. J. Am. Chem. Soc. 81, 3089–3094 (1959).

    CAS  Google Scholar 

  32. 32

    Brotzu, G. Ricerche su di un nuovo antibiotico. Lavori dell'Istituto di Igiene di Cagliari 4–18 (1948).

  33. 33

    Bo, G. Giuseppe Brotzu and the discovery of cephalosporins. Clin. Microbiol. Infect. 6, 6–8 (2000).

    Google Scholar 

  34. 34

    Newton, G. G. & Abraham, E. P. Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175, 548 (1955).

    CAS  Google Scholar 

  35. 35

    Abraham, E. P. & Newton, G. G. F. The structure of cephalosporin C. Biochem. J. 79, 377–393 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Hodgkin, D. C. & Maslen, E. N. The X-ray analysis of the structure of cephalosporin C.. Biochem. J. 79, 393–402 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Woodward, R. B. et al. The total synthesis of cephalosporin C. J. Am. Chem. Soc. 88, 852–853 (1966).

    CAS  Google Scholar 

  38. 38

    Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. Dtsch. Med. Wochenschr. 61, 250–253 (1935).

    CAS  Google Scholar 

  39. 39

    Tréfouël, J., Tréfouël, T., Nitti, F. & Bovet, D. Activité du p-aminophénylsulfamide sur l’infection streptococcique expérimentale de la souris et du lapin. C. R. Séances Soc. Biol. Ses Fil. 120, 756–758 (1935).

    Google Scholar 

  40. 40

    Gelmo, P. Über Sulfamide der p-Amidobenzolsulfonsäure. J. Prakt. Chem. 77, 369–382 (1908).

    CAS  Google Scholar 

  41. 41

    Achari, A. et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4, 490–497 (1997).

    CAS  Google Scholar 

  42. 42

    Dubos, R. J. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J. Exp. Med. 70, 1–10 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Dubos, R. J. Studies on a bactericidal agent extracted from a soil bacillus: II. Protective effect of the bactericidal agent against experimental pneumococcus infections in mice. J. Exp. Med. 70, 11–17 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Dubos, R. J. & Cattaneo, C. Studies on a bactericidal agent extracted from a soil bacillus: III. Preparation and activity of a protein-free fraction. J. Exp. Med. 70, 249–256 (1939).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hotchkiss, R. D. & Dubos, R. J. Fractionation of the bactericidal agent from cultures of a soil bacillus. J. Biol. Chem. 132, 791–792 (1940).

    CAS  Google Scholar 

  46. 46

    Hotchkiss, R. D. & Dubos, R. J. Chemical properties of bactericidal substances isolated from cultures of a soil bacillus. J. Biol. Chem. 132, 793–794 (1940).

    CAS  Google Scholar 

  47. 47

    Hotchkiss, R. D. & Dubos, R. J. Bactericidal fractions from an aerobic sporulating bacillus. J. Biol. Chem. 136, 803–804 (1940).

    CAS  Google Scholar 

  48. 48

    Gause, G. F. & Brazhnikova, M. G. Gramicidin S and its use in the treatment of infected wounds. Nature 154, 703 (1944).

    Google Scholar 

  49. 49

    Gall, Y. M. & Konashev, M. B. The discovery of gramicidin S: the intellectual transformation of G.F. Gause from biologist to researcher of antibiotics and on its meaning for the fate of Russian genetics. Hist. Phil. Life Sci. 23, 137–150 (2001).

    CAS  Google Scholar 

  50. 50

    Synge, R. L. M. ‘Gramicidin S’: over-all chemical characteristics and amino-acid composition. Biochem. J. 39, 363–367 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Gordon, A. H., Martin, A. J. P. & Synge, R. L. M. Proceedings of the Biochemical Society. Biochem. J. 40, xliii–xliv (1946).

    Google Scholar 

  52. 52

    Consden, R., Gordon, A. H., Martin, A. J. P. & Synge, R. L. M. Gramicidin S: the sequence of the amino-acid residues. Biochem. J. 41, 596–602 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Schmidt, G. M. J., Hodgkin, D. C. & Oughton, B. M. A crystallographic study of some derivatives of gramicidin S. Biochem. J. 65, 744–750 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Schwyzer, R. & Sieber, P. Die Synthese des Gramicidin S. Angew. Chem. 68, 518 (1956).

    CAS  Google Scholar 

  55. 55

    Schwyzer, R. & Sieber, P. Die Synthese von Gramicidin S. Helv. Chim. Acta 40, 624–639 (1957).

    CAS  Google Scholar 

  56. 56

    Erlanger, B. F., Sachs, H. & Brand, E. The synthesis of peptides related to gramicidin S. J. Am. Chem. Soc. 76, 1806–1810 (1954).

    CAS  Google Scholar 

  57. 57

    Semrau, S. et al. Membrane lysis by gramicidin S visualized in red blood cells and giant vesicles. Biochim. Biophys. Acta 1798, 2033–2039 (2010).

    CAS  Google Scholar 

  58. 58

    Katsu, T., Kobayashi, H. & Fujita, Y. Mode of action of gramicidin S on Escherichia coli membrane. Biochim. Biophys. Acta 860, 608–619 (1986).

    CAS  Google Scholar 

  59. 59

    Yonezawa, H., Okamoto, K., Tomokiyo, K. & Izumiya, N. Mode of antibacterial action by gramicidin S. J. Biochem. 100, 1253–1259 (1986).

    CAS  Google Scholar 

  60. 60

    Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Exp. Biol. Med. 55, 66–69 (1944).

    CAS  Google Scholar 

  61. 61

    Jones, D., Metzger, H. J., Schatz, A. & Waksman, S. A. Control of Gram-negative bacteria in experimental animals by streptomycin. Science 100, 103–105 (1944).

    CAS  Google Scholar 

  62. 62

    Schatz, A. & Waksman, S. A. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Exp. Biol. Med. 57, 244–248 (1944).

    CAS  Google Scholar 

  63. 63

    Hinshaw, H. C. Historical notes on earliest use of streptomycin in clinical tuberculosis. Am. Rev. Tuberc. 70, 9–14 (1954).

    CAS  Google Scholar 

  64. 64

    Waksman, S. A. & Schatz, A. Streptomycin and process of preparation. US2449866 A (1948).

  65. 65

    Wainwright, M. Streptomycin: discovery and resultant controversy. Hist. Phil. Life Sci. 13, 97–124 (1991).

    CAS  Google Scholar 

  66. 66

    Lemieux, R. U. & Wolfrom, M. L. in Advances in Carbohydrate Chemistry, Vol. 3 (eds Pigman, W. W., Wolfrom, M. L. and Peat, S.) 337–384 (Academic Press, New York, NY, USA, 1948).

  67. 67

    McGilveray, I. J. & Rinehart, K. L. The anomeric linkage of streptose in streptomycin and bluensomycin. J. Am. Chem. Soc. 87, 4003–4004 (1965).

    CAS  Google Scholar 

  68. 68

    Neidle, S., Rogers, D. & Hursthouse, M. B. The crystal and molecular structure of streptomycin oxime selenate. Tetrahedron Lett. 9, 4725–4728 (1968).

    Google Scholar 

  69. 69

    Umezawa, S., Takahashi, Y., Usui, T. & Tsuchiya, T. Total synthesis of streptomycin. J. Antibiot. 27, 997–999 (1974).

    CAS  Google Scholar 

  70. 70

    Umezawa, S., Tsuchiya, T., Yamasaki, T., Sano, H. & Takahashi, Y. Total synthesis of dihydrostreptomycin. J. Am. Chem. Soc. 96, 920–921 (1974).

    CAS  Google Scholar 

  71. 71

    Demirci, H. et al. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 4, 1355 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. 72

    Sharma, D., Cukras, A. R., Rogers, E. J., Southworth, D. R. & Green, R. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374, 1065–1076 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Duggar, B. M. Aureomycin: a product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci. 51, 177–181 (1948).

    CAS  Google Scholar 

  74. 74

    Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Landau, R., Achilladelis, B. & Scriabine, A. Pharmaceutical Innovation: Revolutionizing Human Health, Chemical Heritage Press, Philadelphia, PA, USA, (1999).

    Google Scholar 

  76. 76

    Stephens, C. R. et al. The structure of aureomycin. J. Am. Chem. Soc. 76, 3568–3575 (1954).

    CAS  Google Scholar 

  77. 77

    Hirokawa, S., Okaya, Y., Lovell, F. M. & Pepinsky, R. On the crystal structure of aureomycin hydrochloride. Acta Crystallogr. 12, 811–812 (1959).

    CAS  Google Scholar 

  78. 78

    Hirokawa, S., Okaya, Y., Lovell, F. M. & Pepinsky, R. The crystal structure of aureomycin hydrochloride. Z. Kristallogr. 112, 439–464 (1959).

    CAS  Google Scholar 

  79. 79

    Donohue, J., Dunitz, J. D., Trueblood, K. N. & Webster, M. S. The crystal structure of aureomycin (chlortetracycline) hydrochloride. Configuration, bond distances and conformation. J. Am. Chem. Soc. 85, 851–856 (1963).

    CAS  Google Scholar 

  80. 80

    Muxfeldt, H. et al. Total synthesis of anhydroaureomycin. Angew. Chem. Int. Ed. Engl. 12, 497–499 (1973).

    Google Scholar 

  81. 81

    Scott, A. I. & Bedford, C. T. Simulation of the biosynthesis of tetracyclines. A partial synthesis of tetracycline from anhydroaureomycin. J. Am. Chem. Soc. 84, 2271–2272 (1962).

    CAS  Google Scholar 

  82. 82

    Gurevich, A. I. et al. Synthesis of 12a-deoxy-5a,6-anhydrotetracycline. The first total synthesis of the naturally occuring tetracycline. Tetrahedron Lett. 8, 131–134 (1967).

    Google Scholar 

  83. 83

    Schach von Wittenau, M. Preparation of tetracyclines by photooxidation of anhydrotetracyclines. J. Org. Chem. 29, 2746–2748 (1964).

    Google Scholar 

  84. 84

    Gurevich, A. I., Karapetyan, M. G. & Kolosov, M. N. Research in the field of tetracyclines XLIII. Partial synthesis of anhydrotetracycline. Khim. Prirodn. Soedin., Akad. Nauk UzSSR 2, 141–142 (1966). Chem. Abs. 65, 13627 (1966).

    Google Scholar 

  85. 85

    Gurevich, A. I., Karapetyan, M. G. & Kolosov, M. N. Investigations in the field of tetracyclines XLIII. Partial synthesis of anhydrotetracycline. Chem. Nat. Compd. 2, 112 (1966).

    Google Scholar 

  86. 86

    Conover, L. H., Butler, K., Johnston, J. D., Korst, J. J. & Woodward, R. B. The total synthesis of 6-demethyl-6-deoxytetracycline. J. Am. Chem. Soc. 84, 3222–3224 (1962).

    CAS  Google Scholar 

  87. 87

    Korst, J. J. et al. The total synthesis of dl-6-demethyl-6-deoxytetracycline. J. Am. Chem. Soc. 90, 439–457 (1968).

    CAS  Google Scholar 

  88. 88

    Yao-Tseng, H. Experiments on the synthesis of substances related to tetracyclines. Tetrahedron 11, 52–59 (1960).

    Google Scholar 

  89. 89

    Bhati, A. Syntheses of some tetralones related to tetracyclines. Tetrahedron 18, 1519–1526 (1962).

    CAS  Google Scholar 

  90. 90

    Dürckheimer, W. Tetracyclines: chemistry, biochemistry, and structure-activity relations. Angew. Chem. Int. Ed. Engl. 14, 721–734 (1975).

    Google Scholar 

  91. 91

    Stork, G. & Hagedorn, A. A. 3-Benzyloxyisoxazole system in construction of tetracyclines. J. Am. Chem. Soc. 100, 3609–3611 (1978).

    CAS  Google Scholar 

  92. 92

    Muxfeldt, H. et al. Tetracyclines. 9. Total synthesis of dl-terramycin. J. Am. Chem. Soc. 101, 689–701 (1979).

    CAS  Google Scholar 

  93. 93

    Stork, G., La Clair, J. J., Spargo, P., Nargund, R. P. & Totah, N. Stereocontrolled synthesis of (±)-12a-deoxytetracycline. J. Am. Chem. Soc. 118, 5304–5305 (1996).

    CAS  Google Scholar 

  94. 94

    Tatsuta, K., Yoshimoto, T., Gunji, H., Okado, Y. & Takahashi, M. The first total synthesis of natural (−)-tetracycline. Chem. Lett. 29, 646–647 (2000).

    Google Scholar 

  95. 95

    Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R. & Myers, A. G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308, 395–398 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Charest, M. G., Siegel, D. R. & Myers, A. G. Synthesis of (−)-tetracycline. J. Am. Chem. Soc. 127, 8292–8293 (2005).

    CAS  Google Scholar 

  97. 97

    Nicolaou, K. C. et al. Total synthesis and structural revision of viridicatumtoxin B. Angew. Chem. Int. Ed. 52, 8736–8741 (2013).

    CAS  Google Scholar 

  98. 98

    Nicolaou, K. C. et al. Total synthesis of viridicatumtoxin B and analogues thereof: strategy evolution, structural revision, and biological evaluation. J. Am. Chem. Soc. 136, 12137–12160 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Rose, W. E. & Rybak, M. J. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 26, 1099–1110 (2006).

    CAS  Google Scholar 

  100. 100

    Ehrlich, J., Bartz, Q. R., Smith, R. M., Joslyn, D. A. & Burkholder, P. R. Chloromycetin, a new antibiotic from a soil actinomycete. Science 106, 417 (1947).

    CAS  Google Scholar 

  101. 101

    Gottlieb, D., Bhattacharyya, P. K., Anderson, H. W. & Carter, H. E. Some properties of an antibiotic obtained from a species of Streptomyces. J. Bacteriol. 55, 409–417 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Carter, H. E., Gottlieb, D. & Anderson, H. W. Chloromycetin and streptothricin. Science 107, 113 (1948).

    CAS  Google Scholar 

  103. 103

    Umezawa, H., Tazaki, T., Kanari, H., Okami, Y. & Fukuyama, S. Isolation of a crystalline antibiotic substance from a strain of Streptomyces and its identity with chloromycetin. Jpn. Med. J. 1, 358–363 (1948).

    CAS  Google Scholar 

  104. 104

    Bartz, Q. R. Isolation and characterization of chloromycetin. J. Biol. Chem. 172, 445–450 (1948).

    CAS  Google Scholar 

  105. 105

    Rebstock, M. C., Crooks, H. M., Controulis, J. & Bartz, Q. R. Chloramphenicol (chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 71, 2458–2462 (1949).

    CAS  Google Scholar 

  106. 106

    Controulis, J., Rebstock, M. C. & Crooks, H. M. Chloramphenicol (chloromycetin). V. Synthesis. J. Am. Chem. Soc. 71, 2463–2468 (1949).

    CAS  Google Scholar 

  107. 107

    Drainas, D., Kalpaxis, D. L. & Coutsogeorgopoulos, C. Inhibition of ribosomal peptidyltransferase by chloramphenicol. Eur. J. Biochem. 164, 53–58 (1987).

    CAS  Google Scholar 

  108. 108

    Schlunzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    CAS  Google Scholar 

  109. 109

    Maeda, K., Osato, T. & Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 6, 182 (1953).

    CAS  Google Scholar 

  110. 110

    Nakamura, S. Structure of azomycin, a new antibiotic. Pharm. Bull. 3, 379–383 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Cosar, C. & Julou, L. Activité de l'(hydroxy-2-éthyl)-1 méthyl-2 nitro-5 imidazole (8.823R.P.) vis-à-vis des infections expérimentales Trichomonas vaginalis. Ann. Inst. Pasteur (Paris) 96, 238–241 (1959).

    CAS  Google Scholar 

  112. 112

    White, R. J. in Antibiotic Discovery and Development (eds Dougherty T. J. and Pucci M. J.) 3–31 (Springer, New York, NY, USA, 2011).

  113. 113

    Li, J. J. & Corey, E. J. Drug Discovery: Practices, Processes, and Perspectives, John Wiley & Sons, Hoboken, NJ, USA, (2013).

    Google Scholar 

  114. 114

    Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50 (Suppl 1): S16–S23 (2010).

    Google Scholar 

  115. 115

    Novak, R. & Shlaes, D. M. The pleuromutilin antibiotics: a new class for human use. Curr. Opin. Investig. Drugs 11, 182–191 (2010).

    CAS  Google Scholar 

  116. 116

    Kavanagh, F., Hervey, A. & Robbins, W. J. Antibiotic substances from basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc. Natl. Acad. Sci. USA 37, 570–574 (1951).

    CAS  Google Scholar 

  117. 117

    Kavanagh, F., Hervey, A. & Robbins, W. J. Antibiotic substances from basidiomycetes: IX. Drosophila subtarata. (Batsch Ex Fr.) Quel. Proc. Natl. Acad. Sci. USA 38, 555–560 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Anchel, M. Chemical studies with pleuromutilin. J. Biol. Chem. 199, 133–139 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Birch, A. J., Holzapfel, C. W. & Richards, R. W. Diterpenoid nature of pleuromutilin. Chem. Ind. 14, 374–375 (1963).

    Google Scholar 

  120. 120

    Birch, A. J., Holzapfel, C. W. & Rickards, R. W. The structure and some aspects of the biosynthesis of pleuromutilin. Tetrahedron 22, 359–387 (1966).

    Google Scholar 

  121. 121

    Naegeli, P . Zur Kenntnis des Pleuromutilins. Dissertation, Eidgenössische Technische Hochschule Zürich (1961).

  122. 122

    Arigoni, D. 75. La struttura di un terpene di nuovo genere. Gazz. Chim. Ital. 92, 884–901 (1962).

    CAS  Google Scholar 

  123. 123

    Bonavia, G . Pleuromutilin. Stereochemie und detaillierte Biosynthese. Dissertation, Eidgenössische Technische Hochschule Zürich (1968).

  124. 124

    Gibbons, E. G. One-step synthesis of tricyclo[5.2.2.02,6]undecane derivatives: precursors to pleuromutilin. J. Org. Chem. 45, 1540–1541 (1980).

    CAS  Google Scholar 

  125. 125

    Gibbons, E. G. Total synthesis of (±)-pleuromutilin. J. Am. Chem. Soc. 104, 1767–1769 (1982).

    CAS  Google Scholar 

  126. 126

    Fazakerley, N. J., Helm, M. D. & Procter, D. J. Total synthesis of (+)-pleuromutilin. Chem. Eur. J. 19, 6718–6723 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Högenauer, G. in Mechanism of Action of Antibacterial Agents Tiamulin and Pleuromutilin (ed. Hahn F. E.) 344–360 (Springer Verlag, Berlin, Heidelberg, Federal Republic of Germany, 1979)..

  128. 128

    McGuire, J. M. et al. Ilotycin, ein neues Antibiotikum. Schweiz. Med. Wochenschr. 82, 1064–1065 (1952).

    CAS  Google Scholar 

  129. 129

    McGuire, J. M. et al. Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield, Ill.) 2, 281–283 (1952).

    CAS  Google Scholar 

  130. 130

    Flynn, E. H., Sigal, M. V., Wiley, P. F. & Gerzon, K. Erythromycin. I. Properties and degradation studies. J. Am. Chem. Soc. 76, 3121–3131 (1954).

    CAS  Google Scholar 

  131. 131

    Flynn, E. H., Murphy, H. W. & McMahon, R. E. Erythromycin. II. Des-N-methylerythromycin and N-methyl-C14-erythromycin. J. Am. Chem. Soc. 77, 3104–3106 (1955).

    CAS  Google Scholar 

  132. 132

    Wiley, P. F. & Weaver, O. Erythromycin. III. The structure of cladinose. J. Am. Chem. Soc. 77, 3422–3423 (1955).

    CAS  Google Scholar 

  133. 133

    Wiley, P. F., Gerzon, K., Flynn, E. H., Sigal, M. V. & Quarck, U. C. Erythromycin. IV. Degradative studies. J. Am. Chem. Soc. 77, 3676–3677 (1955).

    CAS  Google Scholar 

  134. 134

    Wiley, P. F., Gerzon, K., Flynn, E. H., Sigal, M. V. & Quarck, U. C. Erythromycin. V. Isolation and structure of degradation products. J. Am. Chem. Soc. 77, 3677–3678 (1955).

    CAS  Google Scholar 

  135. 135

    Sigal, M. V. et al. Erythromycin. VI. Degradation studies. J. Am. Chem. Soc. 78, 388–395 (1956).

    CAS  Google Scholar 

  136. 136

    Wiley, P. F. & Weaver, O. Erythromycin. VII. The structure of cladinose. J. Am. Chem. Soc. 78, 808–810 (1956).

    CAS  Google Scholar 

  137. 137

    Gerzon, K. et al. Erythromycin. VIII. Structure of dihydroerythronolide. J. Am. Chem. Soc. 78, 6396–6408 (1956).

    CAS  Google Scholar 

  138. 138

    Wiley, P. F. et al. Erythromycin. X. Structure of erythromycin. J. Am. Chem. Soc. 79, 6062–6070 (1957).

    CAS  Google Scholar 

  139. 139

    Stephenson, G. A., Stowell, O. G., Toma, P. H., Pfeiffer, R. R. & Byrn, S. R. Solid-state investigations of erythromycin A dihydrate: structure, NMR spectroscopy, and hygroscopicity. J. Pharm. Sci. 86, 1239–1244 (1997).

    CAS  Google Scholar 

  140. 140

    Woodward, R. B. et al. Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide A secoacid derivative via asymmetric induction. J. Am. Chem. Soc. 103, 3210–3213 (1981).

    Google Scholar 

  141. 141

    Woodward, R. B. et al. Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system. J. Am. Chem. Soc. 103, 3213–3215 (1981).

    CAS  Google Scholar 

  142. 142

    Woodward, R. B. et al. Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin. J. Am. Chem. Soc. 103, 3215–3217 (1981).

    CAS  Google Scholar 

  143. 143

    Corey, E. J. et al. Total synthesis of erythromycins. 3. Stereoselective routes to intermediates corresponding to C(1) to C(9) and C(10) to C(13) fragments of erythronolide B. J. Am. Chem. Soc. 100, 4618–4620 (1978).

    CAS  Google Scholar 

  144. 144

    Corey, E. J. et al. Total synthesis of erythromycins. 4. Total synthesis of erythronolide B. J. Am. Chem. Soc. 100, 4620–4622 (1978).

    CAS  Google Scholar 

  145. 145

    Wolfe, A. D. & Hahn, F. E. Erythromycin: mode of action. Science 143, 1445–1446 (1964).

    CAS  Google Scholar 

  146. 146

    Schönfeld, W. & Kirst, H. A. Macrolide Antibiotics, Birkhäuser, Basel, Switzerland, (2012).

    Google Scholar 

  147. 147

    Griffith, R. S. Introduction to vancomycin. Rev. Infect. Dis. 3, S200–S204 (1981).

    Google Scholar 

  148. 148

    Levine, D. P. Vancomycin: a history. Clin. Infect. Dis. 42 (Suppl 1): S5–S12 (2006).

    CAS  Google Scholar 

  149. 149

    Smith, K. A., Williams, D. H. & Smith, G. A. Structural studies on the antibiotic vancomycin; the nature of the aromatic rings. J. Chem. Soc., Perkin Trans. 1 2369–2376 (1974).

  150. 150

    Smith, G. A., Smith, K. A. & Williams, D. H. Structural studies on the antibiotic vancomycin: evidence for the presence of modified phenylglycine and β-hydroxytyrosine units. J. Chem. Soc., Perkin Trans. 1 2108–2115 (1975).

  151. 151

    Williams, D. H. & Kalman, J. R. Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance. J. Am. Chem. Soc. 99, 2768–2774 (1977).

    CAS  Google Scholar 

  152. 152

    Sheldrick, G. M., Jones, P. G., Kennard, O., Williams, D. H. & Smith, G. A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 271, 223–225 (1978).

    CAS  Google Scholar 

  153. 153

    Schäfer, M., Schneider, T. R. & Sheldrick, G. M. Crystal structure of vancomycin. Structure 4, 1509–1515 (1996).

    PubMed  PubMed Central  Google Scholar 

  154. 154

    Evans, D. A. et al. Total syntheses of vancomycin and eremomycin aglycons. Angew. Chem. Int. Ed. 37, 2700–2704 (1998).

    CAS  Google Scholar 

  155. 155

    Evans, D. A. et al. Nonconventional stereochemical issues in the design of the synthesis of the vancomycin antibiotics: challenges imposed by axial and nonplanar chiral elements in the heptapeptide aglycons. Angew. Chem. Int. Ed. 37, 2704–2708 (1998).

    CAS  Google Scholar 

  156. 156

    Nicolaou, K. C. et al. Total synthesis of vancomycin aglycon—Part 1: synthesis of amino acids 4–7 and construction of the AB-COD ring skeleton. Angew. Chem. Int. Ed. 37, 2708–2714 (1998).

    CAS  Google Scholar 

  157. 157

    Nicolaou, K. C. et al. Total synthesis of vancomycin aglycon—Part 2: synthesis of amino acids 1–3 and construction of the AB-COD-DOE ring skeleton. Angew. Chem. Int. Ed. 37, 2714–2716 (1998).

    CAS  Google Scholar 

  158. 158

    Nicolaou, K. C. et al. Total synthesis of vancomycin aglycon—Part 3: final stages. Angew. Chem. Int. Ed. 37, 2717–2719 (1998).

    CAS  Google Scholar 

  159. 159

    Nicolaou, K. C. et al. Total synthesis of vancomycin. Angew. Chem. Int. Ed. 38, 240–244 (1999).

    CAS  Google Scholar 

  160. 160

    Courvalin, P. Vancomycin resistance in Gram-positive Cocci. Clin. Infect. Dis. 42 (Suppl 1): S25–S34 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Charney, J., Fisher, W. P., Curran, C., Machlowitz, R. A. & Tytell, A. A. Streptogramin, a new antibiotic. Antibiot. Chemother. (Northfield, Ill.) 3, 1283–1286 (1953).

    CAS  Google Scholar 

  162. 162

    Mukhtar, T. A. & Wright, G. D. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem. Rev. 105, 529–542 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Vazquez, D. Studies on the mode of action of the streptogramin antibiotics. J. Gen. Microbiol. 42, 93–106 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Bodanszky, M. & Ondetti, M. A. Structures of the vernamycin B group of antibiotics. Antimicrob. Agents Chemother. 161, 360–365 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Delpierre, G. R. et al. Antibiotics of the ostreogrycin complex. Part II. Structure of ostreogrycin A. J. Chem. Soc. C 1653–1669 (1966).

  166. 166

    Kingston, D. G. I., Todd, L. & Williams, D. H. Antibiotics of the ostreogrycin complex. Part III. The structure of ostreogrycin A. Evidence based on nuclear magnetic double resonance experiments and high-resolution mass spectrometry. J. Chem. Soc. C 1669–1676 (1966).

  167. 167

    Durant, F., Evrard, G., Declercq, J. P. & Germain, G. Virginiamycin: factor M-dioxane: C32H43N3O9 . Cryst. Struct. Commun. 3, 503–510 (1974).

    CAS  Google Scholar 

  168. 168

    Karle, I. L. & Flippen-Anderson, J. L. Vernamycin Bα . Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 46, 303–306 (1990).

    Google Scholar 

  169. 169

    Noeske, J. et al. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother. 58, 5269–5279 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. 170

    Ennis, H. L. Inhibition of protein synthesis by polypeptide antibiotics I. Inhibition in intact bacteria. J. Bacteriol. 90, 1102–1108 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Cocito, C. Metabolism of macromolecules in bacteria treated with virginiamycin. Microbiology 57, 179–194 (1969).

    CAS  Google Scholar 

  172. 172

    Rubinstein, E. & Bompart, F. Activity of quinupristin/dalfopristin against Gram-positive bacteria: clinical applications and therapeutic potential. J. Antimicrob. Chemother. 39 (Suppl A): 139–143 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Meyers, A. I., Lawson, J., Amos, R. A., Walker, D. G. & Spohn, R. F. Studies on the total synthesis of streptogramin antibiotics: griseoviridin and madumycin (A-2315A). Pure Appl. Chem. 54, 2537–2544 (1982).

    CAS  Google Scholar 

  174. 174

    Meyers, A. I., Lawson, J. P., Walker, D. G. & Linderman, R. J. Synthetic studies on the streptogramin antibiotics. Enantioselective synthesis of the oxazole dienyl amine moiety. J. Org. Chem. 51, 5111–5123 (1986).

    CAS  Google Scholar 

  175. 175

    Helquist, P. et al. Synthesis of macrocyclic lactam/lactone derivatives having antimicrobial activity. Pure Appl. Chem. 66, 2063–2066 (1994).

    CAS  Google Scholar 

  176. 176

    Wood, R. D. & Ganem, B. A simple solution to the oxazole problem in virginiamycin M. Tetrahedron Lett. 24, 4391–4392 (1983).

    CAS  Google Scholar 

  177. 177

    Schlessinger, R. H., Iwanowicz, E. J. & Springer, J. P. Highly diastereoselective alkylation reactions of vinylogous urethanes derived from simple tetronic acids. Tetrahedron Lett. 29, 1489–1492 (1988).

    CAS  Google Scholar 

  178. 178

    Liu, L., Tanke, R. S. & Miller, M. J. Electrophilic sulfur transfer reactions in organic synthesis. Preparation of a diastereomer of the key macrocyclic component of griseoviridin. J. Org. Chem. 51, 5332–5337 (1986).

    CAS  Google Scholar 

  179. 179

    Adjé, N., Breuilles, P. & Uguen, D. Desymmetrisation of meso-propargylic diols. Tetrahedron Lett. 34, 4631–4634 (1993).

    Google Scholar 

  180. 180

    Ghosh, A. K. & Liu, W. A convergent, enantioselective total synthesis of streptogramin antibiotic (−)-madumycin II. J. Org. Chem. 62, 7908–7909 (1997).

    CAS  Google Scholar 

  181. 181

    Dvorak, C. A. et al. The synthesis of streptogramin antibiotics: (−)-griseoviridin and its C-8 epimer. Angew. Chem. Int. Ed. 39, 1664–1666 (2000).

    CAS  Google Scholar 

  182. 182

    Schlessinger, R. H. & Li, Y.-J. Total synthesis of (−)-virginiamycin M2 using second-generation vinylogous urethane chemistry. J. Am. Chem. Soc. 118, 3301–3302 (1996).

    CAS  Google Scholar 

  183. 183

    Entwistle, D. A., Jordan, S. I., Montgomery, J. & Pattenden, G. Total synthesis of the virginiamycin antibiotic 14,15-anhydropristinamycin IIB . J. Chem. Soc., Perkin Trans. 1 1315–1317 (1996).

  184. 184

    Wu, J. & Panek, J. S. Total synthesis of (−)-virginiamycin M2 . Angew. Chem. Int. Ed. 49, 6165–6168 (2010).

    CAS  Google Scholar 

  185. 185

    Wu, J. & Panek, J. S. Total synthesis of (−)-virginiamycin M2: application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si–H insertion. J. Org. Chem. 76, 9900–9918 (2011).

    CAS  Google Scholar 

  186. 186

    Roth, B., Falco, E. A., Hitchings, G. H. & Bushby, S. R. M. 5-Benzyl-2,4-diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J. Med. Pharm. Chem. 5, 1103–1123 (1962).

    CAS  Google Scholar 

  187. 187

    Noall, E. W. P., Sewards, H. F. G. & Waterworth, P. M. Successful treatment of a case of Proteus Septicaemia. Br. Med. J. 2, 1101–1102 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Bushby, S. R. & Hitchings, G. H. Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother. 33, 72–90 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Gleckman, R., Blagg, N. & Joubert, D. W. Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy 1, 14–19 (1981).

    CAS  Google Scholar 

  190. 190

    Brogden, R. N., Carmine, A. A., Heel, R. C., Speight, T. M. & Avery, G. S. Trimethoprim: a review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs 23, 405–430 (1982).

    CAS  Google Scholar 

  191. 191

    Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Pharm. Chem. 5, 1063–1065 (1962).

    CAS  Google Scholar 

  192. 192

    Emmerson, A. M. & Jones, A. M. The quinolones: decades of development and use. J. Antimicrob. Chemother. 51 (Suppl 1): 13–20 (2003).

    CAS  Google Scholar 

  193. 193

    Hamatake, R. K., Mukai, R. & Hayashi, M. Role of DNA gyrase subunits in synthesis of bacteriophage φX174 viral DNA. Proc. Natl. Acad. Sci. USA 78, 1532–1536 (1981).

    CAS  Google Scholar 

  194. 194

    Sugino, A., Peebles, C. L., Kreuzer, K. N. & Cozzarelli, N. R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. USA 74, 4767–4771 (1977).

    CAS  Google Scholar 

  195. 195

    Gellert, M., Mizuuchi, K., O'Dea, M. H., Itoh, T. & Tomizawa, J. I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. USA 74, 4772–4776 (1977).

    CAS  Google Scholar 

  196. 196

    Reece, R. J. & Maxwell, A. DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335–375 (1991).

    CAS  Google Scholar 

  197. 197

    Fournier, B., Zhao, X., Lu, T., Drlica, K. & Hooper, D. C. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob. Agents Chemother. 44, 2160–2165 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Rinehart, K. L. Jr. Antibiotics with ansa rings. Acc. Chem. Res. 5, 57–64 (1972).

    CAS  Google Scholar 

  199. 199

    Sensi, P., Margalith, P. & Timbal, M. T. Rifomycin, a new antibiotic; preliminary report. Farmaco. Sci. 14, 146–147 (1959).

    CAS  Google Scholar 

  200. 200

    Oppolzer, W., Prelog, V. & Sensi, P. Konstitution des Rifamycins B und verwandter Rifamycine. Experientia 20, 336–339 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201

    Brufani, M., Fedeli, W., Giacomello, G. & Vaciago, A. The X-ray analysis of the structure of rifamycin B. Experientia 20, 339–342 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Leitich, J., Oppolzer, W. & Prelog, V. Über die Konfiguration des Rifamycins B und verwandter Rifamycine. Experientia 20, 343–344 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Bifani, P. et al. The evolution of drug resistance in Mycobacterium tuberculosis: from a mono–rifampin-resistant cluster into increasingly multidrug-resistant variants in an HIV-seropositive population. J. Infect. Dis. 198, 90–94 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Descombe, J. J., Dubourg, D., Picard, M. & Palazzini, E. Pharmacokinetic study of rifaximin after oral administration in healthy volunteers. Int. J. Clin. Pharmacol. Res. 14, 51–56 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Coppi, G., Mazzola, D. & Moiana, S. (Friulchem SpA). New process for the synthesis of rifaximin and a new pseudo-crystalline form of rifaximin obtained thereby. WO2012155981 A1 (2012).

  206. 206

    Calvori, C., Frontali, L., Leoni, L. & Tecce, G. Effect of rifamycin on protein synthesis. Nature 207, 417–418 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Fugitt, R. B. & Luckenbaugh, R. W. 5-Halomethyl-3-phenyl-2-oxazolidinones. US4128654 A (1978).

  209. 209

    Slee, A. M. et al. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob. Agents Chemother. 31, 1791–1797 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Ford, C. W., Zurenko, G. E. & Barbachyn, M. R. The discovery of linezolid, the first oxazolidinone antibacterial agent. Curr. Drug Targets Infect. Disord. 1, 181–199 (2001).

    CAS  Google Scholar 

  211. 211

    Barbachyn, M. R. & Ford, C. W. Oxazolidinone structure–activity relationships leading to linezolid. Angew. Chem. Int. Ed. 42, 2010–2023 (2003).

    CAS  Google Scholar 

  212. 212

    Barbachyn, M. R., Brickner, S. J. & Hutchinson, D. K. Substituted oxazine and thiazine oxazolidinone antimicrobials. US5688792 A (1997).

  213. 213

    Wilson, A. P. R. et al. In vitro susceptibility of Gram-positive pathogens to linezolid and teicoplanin and effect on outcome in critically ill patients. J. Antimicrob. Chemother. 58, 470–473 (2006).

    CAS  Google Scholar 

  214. 214

    Livermore, D. M. Linezolid in vitro: mechanism and antibacterial spectrum. J. Antimicrob. Chemother. 51 (Suppl 2): ii9–ii16 (2003).

    CAS  Google Scholar 

  215. 215

    Jones, R. N. & Biedenbach, D. J. Antimicrobial activity of RU-66647, a new ketolide. Diagn. Microbiol. Infect. Dis. 27, 7–12 (1997).

    CAS  Google Scholar 

  216. 216

    Johnson, A. P. Telithromycin. Aventis Pharma. Curr. Opin. Investig. Drugs 2, 1691–1701 (2001).

    CAS  Google Scholar 

  217. 217

    Zhanel, G. G. et al. The ketolides: a critical review. Drugs 62, 1771–1804 (2002).

    CAS  Google Scholar 

  218. 218

    Berisio, R. et al. Structural insight into the antibiotic action of telithromycin against resistant mutants. J. Bacteriol. 185, 5027 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219

    Ackermann, G. & Rodloff, A. C. Drugs of the 21st century: telithromycin (HMR 3647)—the first ketolide. J. Antimicrob. Chemother. 51, 497–511 (2003).

    CAS  Google Scholar 

  220. 220

    Judice, J. K. & Pace, J. L. Semi-synthetic glycopeptide antibacterials. Bioorg. Med. Chem. Lett. 13, 4165–4168 (2003).

    CAS  Google Scholar 

  221. 221

    Leadbetter, M. R. et al. Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J. Antibiot. 57, 326–336 (2004).

    CAS  Google Scholar 

  222. 222

    Saravolatz, L. D., Stein, G. E. & Johnson, L. B. Telavancin: a novel lipoglycopeptide. Clin. Infect. Dis. 49, 1908–1914 (2009).

    CAS  Google Scholar 

  223. 223

    Corey, G. R., Stryjewski, M. E., Weyenberg, W., Yasothan, U. & Kirkpatrick, P. Telavancin. Nat. Rev. Drug Discov. 8, 929–930 (2009).

    CAS  Google Scholar 

  224. 224

    Spellberg, B., Bartlett, J. G. & Gilbert, D. N. The future of antibiotics and resistance. N. Engl. J. Med. 368, 299–302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225

    Dever, L. A. & Dermody, T. S. Mechanisms of bacterial resistance to antibiotics. Arch. Intern. Med. 151, 886–895 (1991).

    CAS  Google Scholar 

  226. 226

    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Micro. 13, 42–51 (2015).

    CAS  Google Scholar 

  227. 227

    Li, X.-Z. & Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs 69, 1555–1623 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228

    Aminov, R. I. & Mackie, R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161 (2007).

    CAS  Google Scholar 

  229. 229

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    CAS  Google Scholar 

  230. 230

    Penicillin's finder assays its future. N.Y. Times, 21 (26 June 1945).

  231. 231

    Boucher, H. W. et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12 (2009).

    PubMed  PubMed Central  Google Scholar 

  232. 232

    Spellberg, B. et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 155–164 (2008).

    PubMed  PubMed Central  Google Scholar 

  233. 233

    Kupferschmidt, K. Resistance fighters. Science 352, 758–761 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234

    Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235

    Giltrap, A. M. et al. Total synthesis of teixobactin. Org. Lett. 18, 2788–2791 (2016).

    CAS  Google Scholar 

  236. 236

    Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    CAS  Google Scholar 

  237. 237

    O’Neil, J. Antimicrobial resistance: tackling a crisis for the future health and wealth of nations (2014). Available at: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.

  238. 238

    Shapiro, D. J., Hicks, L. A., Pavia, A. T. & Hersh, A. L. Antibiotic prescribing for adults in ambulatory care in the USA, 2007–09. J. Antimicrob. Chemother. 69, 234–240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239

    de Lalla, F. et al. Third generation cephalosporins as a risk factor for Clostridium difficile-associated disease: a four-year survey in a general hospital. J. Antimicrob. Chemother. 23, 623–631 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240

    Nicolaou, K. C. & Rigol, S. The evolution and impact of total synthesis on chemistry, biology and medicine. Isr. J. Chem. 57, 179–191 (2017).

    CAS  Google Scholar 

  241. 241

    Liu, C. M. et al. X-14547A, a new ionophorous antibiotic produced by Streptomyces antibioticus NRRL 8167. Discovery, fermentation, biological properties and taxonomy of the producing culture. J. Antibiot. 32, 95–99 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242

    Westley, J. W. et al. Isolation and characterization of antibiotic X-14547A, a novel monocarboxylic acid ionophore produced by Streptomyces antibioticus NRRL 8167. J. Antibiot. 32, 100–107 (1979).

    CAS  Google Scholar 

  243. 243

    Westley, J. & Liu, C.-M. Antibiotic X-14547. US4100171 A (1978).

  244. 244

    Westley, J. & Liu, C.-M. (Hoffmann-La Roche Inc.). Antibiotic X-14547 and its use for increasing feed efficiency in ruminants. US4167579 A (1979).

  245. 245

    Nicolaou, K. C. & Magolda, R. L. Ionophore antibiotic X-14547A. Degradation studies and stereoselective construction of the ‘right wing‘ (C11-C25 fragment) by an intramolecular Diels–Alder reaction. J. Org. Chem. 46, 1506–1508 (1981).

    CAS  Google Scholar 

  246. 246

    Nicolaou, K. C., Papahatjis, D. P., Claremon, D. A. & Dolle, R. E. Total synthesis of ionophore antibiotic X-14547A. 1. Enantioselective synthesis of the tetrahydropyran and tetrahydroindan building blocks. J. Am. Chem. Soc. 103, 6967–6969 (1981).

    CAS  Google Scholar 

  247. 247

    Nicolaou, K. C., Claremon, D. A., Papahatjis, D. P. & Magolda, R. L. Total synthesis of ionophore antibiotic X-14547A. 2. Coupling of the tetrahydropyran and tetrahydroindan systems and construction of the butadienyl and ketopyrrole moieties. J. Am. Chem. Soc. 103, 6969–6971 (1981).

    CAS  Google Scholar 

  248. 248

    Roush, W. R. & Myers, A. G. Antibiotic X-14547A: total synthesis of the right-hand half. J. Org. Chem. 46, 1509–1511 (1981).

    CAS  Google Scholar 

  249. 249

    Roush, W. R. & Peseckis, S. M. Studies on the total synthesis of antibiotic X-14547A: the pentaene approach. Tetrahedron Lett. 23, 4879–4882 (1982).

    CAS  Google Scholar 

  250. 250

    Ho, P.-T. Studies toward polyether antibiotics: stereospecific synthesis of polysubstituted tetrahydropyrans. Can. J. Chem. 60, 90–94 (1982).

    CAS  Google Scholar 

  251. 251

    Edwards, M. P., Ley, S. V., Lister, S. G. & Palmer, B. D. Total synthesis of the structurally unique ionophore antibiotic X-14547A. J. Chem. Soc., Chem. Commun. 630–633 (1983).

  252. 252

    Roush, W. R., Peseckis, S. M. & Walts, A. E. Synthesis of antibiotic X-14547A. J. Org. Chem. 49, 3429–3432 (1984).

    CAS  Google Scholar 

  253. 253

    Edwards, M. P., Ley, S. V., Lister, S. G., Palmer, B. D. & Williams, D. J. Total synthesis of the ionophore antibiotic X-14547A (indanomycin). J. Org. Chem. 49, 3503–3516 (1984).

    CAS  Google Scholar 

  254. 254

    Boeckman, R. K., Enholm, E. J., Demko, D. M. & Charette, A. B. An efficient enantioselective total synthesis of (−)-X-14547A (indanomycin). J. Org. Chem. 51, 4743–4745 (1986).

    CAS  Google Scholar 

  255. 255

    Burke, S. D. et al. Total synthesis of ionophore antibiotic X-14547A (indanomycin). J. Org. Chem. 59, 332–347 (1994).

    CAS  Google Scholar 

  256. 256

    Dewey, R. S., Arison, B. H., Hannah, J., Shih, D. H. & Albers-Schönberg, G. The structure of efrotomycin. J. Antibiot. 38, 1691–1698 (1985).

    CAS  Google Scholar 

  257. 257

    Frost, B. M., Valiant, M. E., Weissberger, B. & Dulaney, E. L. Antibacterial activity of efrotomycin. J. Antibiot. 29, 1083–1091 (1976).

    CAS  Google Scholar 

  258. 258

    Clabots, C. R., Shanholtzer, C. J., Peterson, L. R. & Gerding, D. N. In vitro activity of efrotomycin, ciprofloxacin, and six other antimicrobials against Clostridium difficile. Diagn. Microbiol. Infect. Dis. 6, 49–52 (1987).

    CAS  Google Scholar 

  259. 259

    Foster, A. G. et al. Effect of efrotomycin on gain and feed efficiency for pigs from weaning until market weight. J. Anim. Sci. 65, 877–880 (1987).

    CAS  Google Scholar 

  260. 260

    Dolle, R. E. & Nicolaou, K. C. Total synthesis of elfamycins: aurodox and efrotomycin. 1. Strategy and construction of key intermediates. J. Am. Chem. Soc. 107, 1691–1694 (1985).

    CAS  Google Scholar 

  261. 261

    Dolle, R. E. & Nicolaou, K. C. Total synthesis of elfamycins: aurodox and efrotomycin. 2. Coupling of key intermediates and completion of the synthesis. J. Am. Chem. Soc. 107, 1695–1698 (1985).

    CAS  Google Scholar 

  262. 262

    Dolle, R. E. & Nicolaou, K. C. Carbohydrate-based syntheses of the goldinonolactone and the tetrahydrofuran fragments of aurodox and efrotomycin. J. Chem. Soc., Chem. Commun. 1016–1018 (1985).

  263. 263

    Ellis, D. Amphotericin B: spectrum and resistance. J. Antimicrob. Chemother. 49 (Suppl 1): 7–10 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. 264

    Lewis, R. E., Kontoyiannis, D. P., Darouiche, R. O., Raad, I. I. & Prince, R. A. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob. Agents Chemother. 46, 3499–3505 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265

    den Boer, M. & Davidson, R. N. Treatment options for visceral leishmaniasis. Expert Rev. Anti Infect. Ther. 4, 187–197 (2006).

    CAS  Google Scholar 

  266. 266

    Dutcher, J. D., William, G., Pagano, J. F. & Vandeputte, J. (Olin Mathieson Chemical Corporation). Amphotericin B, its production, and its salts. US2908611 A (1959).

  267. 267

    Nicolaou, K. C., Daines, R. A., Chakraborty, T. K. & Ogawa, Y. Total synthesis of amphotericin B. J. Am. Chem. Soc. 109, 2821–2822 (1987).

    CAS  Google Scholar 

  268. 268

    Nicolaou, K. C. et al. Total synthesis of amphoteronolide B and amphotericin B. 1. Strategy and stereocontrolled construction of key building blocks. J. Am. Chem. Soc. 110, 4672–4685 (1988).

    CAS  Google Scholar 

  269. 269

    Nicolaou, K. C., Daines, R. A., Chakraborty, T. K. & Ogawa, Y. Total synthesis of amphoteronolide B and amphotericin B. 2. Total synthesis of amphoteronolide B. J. Am. Chem. Soc. 110, 4685–4696 (1988).

    CAS  Google Scholar 

  270. 270

    Nicolaou, K. C., Daines, R. A., Ogawa, Y. & Chakraborty, T. K. Total synthesis of amphotericin B. 3. The final stages. J. Am. Chem. Soc. 110, 4696–4705 (1988).

    CAS  Google Scholar 

  271. 271

    Palacios, D. S., Dailey, I., Siebert, D. M., Wilcock, B. C. & Burke, M. D. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc. Natl. Acad. Sci. USA 108, 6733–6738 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272

    Gray, K. C. et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109, 2234–2239 (2012).

    CAS  Google Scholar 

  273. 273

    Wilcock, B. C., Endo, M. M., Uno, B. E. & Burke, M. D. C2′-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J. Am. Chem. Soc. 135, 8488–8491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. 274

    Anderson, T. M. et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10, 400–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. 275

    Masamune, S., Kaiho, T. & Garvey, D. S. Aldol methodology: synthesis of versatile intermediates, 3-hydroxy-2-vinylcarbonyl compounds. J. Am. Chem. Soc. 104, 5521–5523 (1982).

    CAS  Google Scholar 

  276. 276

    Brooks, D. W. & Kellogg, R. P. Synthetic studies of polyene macrolides, synthesis of a C29–37 fragment for amphotericin B and nystatin. Tetrahedron Lett. 23, 4991–4994 (1982).

    CAS  Google Scholar 

  277. 277

    Boschelli, D., Ellingboe, J. W. & Masamune, S. Aldol methodology: synthesis of syn-3-hydroxy-2-vinylcarbonyl compounds. Tetrahedron Lett. 25, 3395–3398 (1984).

    CAS  Google Scholar 

  278. 278

    Masamune, S., Ma, P., Okumoto, H., Ellingboe, J. W. & Ito, Y. Synthesis of amphotericin B. 1. Fragment A of the aglycon. J. Org. Chem. 49, 2834–2837 (1984).

    CAS  Google Scholar 

  279. 279

    Boschelli, D., Takemasa, T., Nishitani, Y. & Masamune, S. Synthesis of amphotericin B. 2. Fragment C-D of the aglycone. Tetrahedron Lett. 26, 5239–5242 (1985).

    CAS  Google Scholar 

  280. 280

    McGarvey, G. J., Williams, J. M., Hiner, R. N., Matsubara, Y. & Oh, T. L-Aspartic acid in acyclic stereoselective synthesis. Synthetic studies on amphotericin B. J. Am. Chem. Soc. 108, 4943–4952 (1986).

    CAS  Google Scholar 

  281. 281

    Solladié, G. & Hutt, J. Asymmetric synthesis of polyhydroxylated natural products II. The C-1/C-12 unit of amphotericin B. Tetrahedron Lett. 28, 797–800 (1987).

    Google Scholar 

  282. 282

    Hanessian, S., Sahoo, S. P. & Botta, M. Methodology for the polyene and related antibiotics—enantiospecific synthesis of chiral structural units of amphotericin B from a common progenitor: the C1–C13 polyol segment. Tetrahedron Lett. 28, 1143–1146 (1987).

    CAS  Google Scholar 

  283. 283

    Hanessian, S., Sahoo, S. P. & Botta, M. Methodology for the polyene and related antibiotics—enantiospecific synthesis of chiral structural units of amphotericin B from a common progenitor: the C14–C20 and C32–C38 segments. Tetrahedron Lett. 28, 1147–1150 (1987).

    CAS  Google Scholar 

  284. 284

    Hanessian, S. & Botta, M. Methodology for the polyene and related antibiotics—versatile and practical access to bifunctional all-trans polyolefinic systems. Tetrahedron Lett. 28, 1151–1154 (1987).

    CAS  Google Scholar 

  285. 285

    Kennedy, R. M., Abiko, A., Takemasa, T., Okumoto, H. & Masamune, S. A synthesis of 19-dehydroamphoteronolide B. Tetrahedron Lett. 29, 451–454 (1988).

    CAS  Google Scholar 

  286. 286

    Brückner, R. Stereocontrolled synthesis of a C14-C20 building block for amphotericin B using a novel [2,3] Wittig rearrangement. Tetrahedron Lett. 29, 5747–5750 (1988).

    Google Scholar 

  287. 287

    McGarvey, G. J. et al. Synthetic studies on the polyene macrolide antibiotics. Development of syn- and anti-1,3-diol subunits and assembly of the polyacetate region of amphotericin B. J. Org. Chem. 60, 7778–7790 (1995).

    CAS  Google Scholar 

  288. 288

    McGarvey, G. J., Mathys, J. A. & Wilson, K. J. Synthesis of amphotericin B. A convergent strategy to the polyol segment of the heptaene macrolide antibiotics. J. Org. Chem. 61, 5704–5705 (1996).

    CAS  Google Scholar 

  289. 289

    Krüger, J. & Carreira, E. M. Convergent synthesis of the amphotericin polyol subunit employing asymmetric dienolate addition reactions. Tetrahedron Lett. 39, 7013–7016 (1998).

    Google Scholar 

  290. 290

    Solladié, G., Wilb, N. & Bauder, C. A chiral β,δ-dioxo-ε-sulfinyl ester in a convergent enantioselective synthesis towards the C1–C13 polyol fragment of amphotericin B. Eur. J. Org. Chem. 1999, 3021–3026 (1999).

    Google Scholar 

  291. 291

    BouzBouz, S. & Cossy, J. Enantioselective allyltitanation. Efficient synthesis of the C1−C14 polyol subunit of amphotericin B. Org. Lett. 2, 3975–3977 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. 292

    Bonini, C., Chiummiento, L., Martuscelli, A. & Viggiani, L. A convergent preparation of the C1–C13 fragment of amphotericin B from a single chiral precursor. Tetrahedron Lett. 45, 2177–2179 (2004).

    CAS  Google Scholar 

  293. 293

    Adediran, S. A. et al. Synthesis of a highly water-soluble derivative of amphotericin B with attenuated proinflammatory activity. Mol. Pharm. 6, 1582–1590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. 294

    Gray, K. C. Semisynthesis of amphotericin B and its derivatives via iterative cross-coupling (PhD thesis, Univ. Illinois at Urbana-Champaign, (2011).

  295. 295

    Janout, V., Bienvenu, C., Schell, W., Perfect, J. R. & Regen, S. L. Molecular umbrella–amphotericin B conjugates. Bioconjug. Chem. 25, 1408–1411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. 296

    McCormick, M. H., McGuire, J. M., Pittenger, G. E., Pittenger, R. C. & Stark, W. M. Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot. Annu. 3, 606–611 (1955–1956).

    Google Scholar 

  297. 297

    McGuire, J. M., Wolfe, R. N. & Ziegler, D. W. Vancomycin, a new antibiotic. II. In vitro antibacterial studies. Antibiot. Annu. 3, 612–618 (1955–1956).

    Google Scholar 

  298. 298

    Griffith, R. S. & Peck, F. B. Jr. Vancomycin, a new antibiotic. III. Preliminary clinical and laboratory studies. Antibiot. Annu. 3, 619–622 (1955–1956).

    Google Scholar 

  299. 299

    Nicolaou, K. C. et al. Target-accelerated combinatorial synthesis and discovery of highly potent antibiotics effective against vancomycin-resistant bacteria. Angew. Chem. Int. Ed. 39, 3823–3828 (2000).

    CAS  Google Scholar 

  300. 300

    Nicolaou, K. C. et al. Solid- and solution-phase synthesis of vancomycin and vancomycin analogues with activity against vancomycin-resistant bacteria. Chem. Eur. J. 7, 3798–3823 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. 301

    Nicolaou, K. C. et al. Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria: target-accelerated combinatorial synthesis. Chem. Eur. J. 7, 3824–3843 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. 302

    Ganguly, A. K. et al. The structure of new oligosaccharide antibiotics, 13-384 components 1 and 5. Heterocycles 28, 83–88 (1989).

    CAS  Google Scholar 

  303. 303

    Ganguly, A. K. in Topics in Antibiotic Chemistry, Vol. 2, Part B (ed. Sammes P. G.) 61–96 (Ellis Horwood, Chichester, UK, 1978).

  304. 304

    Ganguly, A. K., McCormick, J. L., Saksena, A. K., Das, P. R. & Chan, T.-M. Chemical modifications and structure activity studies of ziracin and related everninomicin antibiotics. Bioorg. Med. Chem. Lett. 9, 1209–1214 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. 305

    Ganguly, A. K., Girijavallabhan, V. M. & Sarre, O. (Schering Corporation). Novel derivatives of the oligosaccharide antibiotic complex 13-384, their preparation and pharmaceutical compositions containing them. WO8702366 (1987).

  306. 306

    Patel, M. et al. Lipophilic oligosaccharide antibiotic salt compositions. EP0538011 (A1) (1993).

  307. 307

    Wright, D. E. The orthosomycins, a new family of antibiotics. Tetrahedron 35, 1207–1237 (1979).

    CAS  Google Scholar 

  308. 308

    Maertens, J. A. Sch-27899 Schering-Plough. Curr. Opin. Anti-Infect. Invest. Drugs 1, 49–56 (1999).

    CAS  Google Scholar 

  309. 309

    Maertens, J. A. Sch-27899 (Schering-Plough Corp). IDrugs 2, 446–453 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. 310

    Urban, C. et al. Comparative in-vitro activity of SCH 27899, a novel everninomicin, and vancomycin. J. Antimicrob. Chemother. 37, 361–364 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. 311

    McNicholas, P. M. et al. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 44, 1121–1126 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. 312

    Nicolaou, K. C. et al. Total synthesis of everninomicin 13,384-1—Part 1: synthesis of the A1B(A)C fragment. Angew. Chem. Int. Ed. 38, 3334–3339 (1999).

    CAS  Google Scholar 

  313. 313

    Nicolaou, K. C., Rodríguez, R. M., Fylaktakidou, K. C., Suzuki, H. & Mitchell, H. J. Total synthesis of everninomicin 13,384-1—Part 2: synthesis of the FGHA2 fragment. Angew. Chem. Int. Ed. 38, 3340–3345 (1999).

    CAS  Google Scholar 

  314. 314

    Nicolaou, K. C., Mitchell, H. J., Rodríguez, R. M., Fylaktakidou, K. C. & Suzuki, H. Total synthesis of everninomicin 13,384-1—Part 3: synthesis of the DE fragment and completion of the total synthesis. Angew. Chem. Int. Ed. 38, 3345–3350 (1999).

    CAS  Google Scholar 

  315. 315

    Nicolaou, K. C. et al. Total synthesis of everninomicin 13,384-1—Part 1: Retrosynthetic analysis and synthesis of the A1B(A)C fragment. Chem. Eur. J. 6, 3095–3115 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. 316

    Nicolaou, K. C., Mitchell, H. J., Fylaktakidou, K. C., Rodríguez, R. M. & Suzuki, H. Total synthesis of everninomicin 13,384-1—Part 2: synthesis of the FGHA2 fragment. Chem. Eur. J. 6, 3116–3148 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. 317

    Nicolaou, K. C. et al. Total synthesis of everninomicin 13,384-1—Part 3: synthesis of the DE fragment and completion of the total synthesis. Chem. Eur. J. 6, 3149–3165 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. 318

    Nicolaou, K. C. et al. Total synthesis of everninomicin 13,384-1—Part 4: explorations of methodology; stereocontrolled synthesis of 1,1′-disaccharides, 1,2-seleno migrations in carbohydrates, and solution- and solid-phase synthesis of 2-deoxy glycosides and orthoesters. Chem. Eur. J. 6, 3166–3185 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. 319

    Kamigakinai, T., Nakashima, M. & Tani, H. (Shionogi and Co., Ltd.). New benzoxacyclotridecyne compound and medicinal composition containing the same. JP10101666 (1998).

  320. 320

    Wilson, K. E. et al. Isolation and structure elucidation of coleophomones A and B, novel inhibitors of bacterial cell wall transglycosylase. Tetrahedron Lett. 41, 8705–8709 (2000).

    CAS  Google Scholar 

  321. 321

    Urata, H., Kinoshita, A., Misono, K. S., Bumpus, F. M. & Husain, A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J. Biol. Chem. 265, 22348–22357 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  322. 322

    Nicolaou, K. C., Vassilikogiannakis, G. & Montagnon, T. The total synthesis of coleophomones B and C. Angew. Chem. Int. Ed. 41, 3276–3281 (2002).

    CAS  Google Scholar 

  323. 323

    Nicolaou, K. C., Montagnon, T., Vassilikogiannakis, G. & Mathison, C. J. N. The total synthesis of coleophomones B,C and D. J. Am. Chem. Soc. 127, 8872–8888 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. 324

    Anderson, B., Hodgkin, D. C. & Viswamitra, M. A. The structure of thiostrepton. Nature 225, 233–235 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  325. 325

    Donovick, R., Pagano, J. F., Stout, H. A. & Weinstein, M. J. Thiostrepton, a new antibiotic. I. In vitro studies. Antibiot. Annu. 3, 554–559 (1955–1956).

    PubMed  PubMed Central  Google Scholar 

  326. 326

    Jambor, W. P., Steinberg, B. A. & Suydam, L. O. Thiostrepton, a new antibiotic. III. In vivo studies. Antibiot. Annu. 3, 562–565 (1955–1956).

    PubMed  PubMed Central  Google Scholar 

  327. 327

    Nicolaou, K. C., Safina, B. S., Funke, C., Zak, M. & Zécri, F. J. Stereocontrolled synthesis of the quinaldic acid macrocyclic system of thiostrepton. Angew. Chem. Int. Ed. 41, 1937–1940 (2002).

    CAS  Google Scholar 

  328. 328

    Nicolaou, K. C., Nevalainen, M., Safina, B. S., Zak, M. & Bulat, S. A biomimetically inspired synthesis of the dehydropiperidine domain of thiostrepton. Angew. Chem. Int. Ed. 41, 1941–1945 (2002).

    CAS  Google Scholar 

  329. 329

    Nicolaou, K. C. et al. Synthetic studies on thiostrepton: construction of thiostrepton analogues with the thiazoline-containing macrocycle. Angew. Chem. Int. Ed. 42, 3418–3424 (2003).

    CAS  Google Scholar 

  330. 330

    Nicolaou, K. C., Safina, B. S., Zak, M., Estrada, A. A. & Lee, S. H. Total synthesis of thiostrepton, Part 1: construction of the dehydropiperidine/thiazoline-containing macrocycle. Angew. Chem. Int. Ed. 43, 5087–5092 (2004).

    CAS  Google Scholar 

  331. 331

    Nicolaou, K. C., Zak, M., Safina, B. S., Lee, S. H. & Estrada, A. A. Total synthesis of thiostrepton, Part 2: construction of the quinaldic acid macrocycle and final stages of the synthesis. Angew. Chem. Int. Ed. 43, 5092–5097 (2004).

    CAS  Google Scholar 

  332. 332

    Nicolaou, K. C. et al. Total synthesis of thiostrepton. Retrosynthetic analysis and construction of key building blocks. J. Am. Chem. Soc. 127, 11159–11175 (2005).

    CAS  Google Scholar 

  333. 333

    Nicolaou, K. C. et al. Total synthesis of thiostrepton. Assembly of key building blocks and completion of the synthesis. J. Am. Chem. Soc. 127, 11176–11183 (2005).

    CAS  Google Scholar 

  334. 334

    Dutcher, J. D. & Vandeputte, J. Thiostrepton, a new antibiotic. II. Isolation and chemical characterization. Antibiot. Annu. 3, 560–561 (1955–1956).

    Google Scholar 

  335. 335

    Naaktgeboren, N., Roobol, K., Gubbens, J. & Voorma, H. O. The mode of action of thiostrepton in the initiation of protein synthesis. Eur. J. Biochem. 70, 39–47 (1976).

    CAS  Google Scholar 

  336. 336

    Rodnina, M. V. et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA 96, 9586–9590 (1999).

    CAS  Google Scholar 

  337. 337

    Walter, J. D., Hunter, M., Cobb, M., Traeger, G. & Spiegel, P. C. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res. 40, 360–370 (2011).

    PubMed  PubMed Central  Google Scholar 

  338. 338

    Nicolaou, K. C. How thiostrepton was made in the laboratory. Angew. Chem. Int. Ed. 51, 12414–12436 (2012).

    CAS  Google Scholar 

  339. 339

    Nicolaou, K. C., Estrada, A. A., Zak, M., Lee, S. H. & Safina, B. S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. Int. Ed. 44, 1378–1382 (2005).

    CAS  Google Scholar 

  340. 340

    Nicolaou, K. C., Estrada, A. A., Zak, M., Lee, S. H. & Safina, B. S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. ChemInform 36, doi:10.1002/chin.200524057 (2005).

  341. 341

    Bister, B. et al. Abyssomicin C–a polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. 43, 2574–2576 (2004).

    CAS  Google Scholar 

  342. 342

    Riedlinger, J. et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J. Antibiot. 57, 271–279 (2004).

    CAS  Google Scholar 

  343. 343

    Keller, S. et al. Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032. J. Antibiot. 60, 391–394 (2007).

    CAS  Google Scholar 

  344. 344

    Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C and atrop-abyssomicin C. Angew. Chem. Int. Ed. 45, 3256–3260 (2006).

    CAS  Google Scholar 

  345. 345

    Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C, atrop-abyssomicin C, and abyssomicin D: implications for natural origins of atrop-abyssomicin C. J. Am. Chem. Soc. 129, 429–440 (2007).

    CAS  Google Scholar 

  346. 346

    Nicolaou, K. C., Harrison, S. T. & Chen, J. S. Discoveries from the abyss: the abyssomicins and their total synthesis. Synthesis 2009, 33–42 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  347. 347

    Snider, B. B. & Zou, Y. Synthesis of the carbocyclic skeleton of abyssomicins C and D. Org. Lett. 7, 4939–4941 (2005).

    CAS  Google Scholar 

  348. 348

    Rath, J.-P., Eipert, M., Kinast, S. & Maier, M. E. Synthesis of the tetronate-containing core structure of the antibiotic abyssomicin C. Synlett 2005, 314–318 (2005).

    Google Scholar 

  349. 349

    Rath, J.-P., Kinast, S. & Maier, M. E. Synthesis of the fully functionalized core structure of the antibiotic abyssomicin C. Org. Lett. 7, 3089–3092 (2005).

    CAS  Google Scholar 

  350. 350

    Zografos, A. L., Yiotakis, A. & Georgiadis, D. Rapid access to the tricyclic spirotetronic core of abyssomicins. Org. Lett. 7, 4515–4518 (2005).

    CAS  Google Scholar 

  351. 351

    Kinast, S . Strategien zur Synthese von Abyssomicin C Derivaten. Dissertation, Eberhard Karls Universität Tübingen (2008).

  352. 352

    Couladouros, E. A., Bouzas, E. A. & Magos, A. D. Formal synthesis of abyssomicin C. Tetrahedron 62, 5272–5279 (2006).

    CAS  Google Scholar 

  353. 353

    Zapf, C. W., Harrison, B. A., Drahl, C. & Sorensen, E. J. A Diels–Alder macrocyclization enables an efficient asymmetric synthesis of the antibacterial natural product abyssomicin C. Angew. Chem. Int. Ed. 44, 6533–6537 (2005).

    CAS  Google Scholar 

  354. 354

    Bihelović, F. & Saičić, R. N. Total synthesis of (−)-atrop-abyssomicin C. Angew. Chem. Int. Ed. 51, 5687–5691 (2012).

    Google Scholar 

  355. 355

    Bihelović, F., Karadžić, I., Matović, R. & Saičić, R. N. Total synthesis and biological evaluation of (−)-atrop-abyssomicin C. Org. Biomol. Chem. 11, 5413–5424 (2013).

    Google Scholar 

  356. 356

    Kwon, H. C., Kauffman, C. A., Jensen, P. R. & Fenical, W. Marinomycins A−D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J. Am. Chem. Soc. 128, 1622–1632 (2006).

    CAS  Google Scholar 

  357. 357

    Nicolaou, K. C., Nold, A. L., Milburn, R. R. & Schindler, C. S. Total synthesis of marinomycins A–C. Angew. Chem. Int. Ed. 45, 6527–6532 (2006).

    CAS  Google Scholar 

  358. 358

    Nicolaou, K. C. et al. Total synthesis of marinomycins A−C and of their monomeric counterparts monomarinomycin A and iso-monomarinomycin A. J. Am. Chem. Soc. 129, 1760–1768 (2007).

    CAS  Google Scholar 

  359. 359

    Amans, D., Bellosta, V. & Cossy, J. An efficient and stereoselective synthesis of the monomeric counterpart of marinomycin A. Org. Lett. 9, 1453–1456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  360. 360

    Amans, D., Bareille, L., Bellosta, V. & Cossy, J. Synthesis of the monomeric counterpart of marinomycin A. J. Org. Chem. 74, 7665–7674 (2009).

    CAS  Google Scholar 

  361. 361

    Evans, P. A., Huang, M.-H., Lawler, M. J. & Maroto, S. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization. Nat. Chem. 4, 680–684 (2012).

    CAS  Google Scholar 

  362. 362

    Nishimaru, T. et al. Total synthesis of marinomycin A based on a direct dimerization strategy. Angew. Chem. Int. Ed. 53, 8459–8462 (2014).

    CAS  Google Scholar 

  363. 363

    Singh, S. B., Phillips, J. W. & Wang, J. Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr. Opin. Drug Discov. Dev. 10, 160–166 (2007).

    CAS  Google Scholar 

  364. 364

    Young, K. et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob. Agents Chemother. 50, 519–526 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  365. 365

    Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. 366

    Singh, S. B. et al. Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. J. Am. Chem. Soc. 128, 11916–11920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  367. 367

    Häbich, D. & von Nussbaum, F. Platensimycin, a new antibiotic and ‘superbug challenger’ from nature. ChemMedChem 1, 951–954 (2006).

    PubMed  PubMed Central  Google Scholar 

  368. 368

    Nicolaou, K. C., Li, A. & Edmonds, D. J. Total synthesis of platensimycin. Angew. Chem. Int. Ed. 45, 7086–7090 (2006).

    CAS  Google Scholar 

  369. 369

    Nicolaou, K. C., Tang, Y. & Wang, J. Formal synthesis of (±)-platensimycin. Chem. Commun. 1922–1923 (2007).

  370. 370

    Nicolaou, K. C., Pappo, D., Tsang, K. Y., Gibe, R. & Chen, D. Y. K. A chiral pool based synthesis of platensimycin. Angew. Chem. Int. Ed. 47, 944–946 (2008).

    CAS  Google Scholar 

  371. 371

    Nicolaou, K. C., Li, A., Ellery, S. P. & Edmonds, D. J. Rhodium-catalyzed asymmetric enyne cycloisomerization of terminal alkynes and formal total synthesis of (−)-platensimycin. Angew. Chem. Int. Ed. 48, 6293–6295 (2009).

    CAS  Google Scholar 

  372. 372

    Nicolaou, K. C., Li, A., Edmonds, D. J., Tria, G. S. & Ellery, S. P. Total synthesis of platensimycin and related natural products. J. Am. Chem. Soc. 131, 16905–16918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  373. 373

    Nicolaou, K. C., Edmonds, D. J., Li, A. & Tria, G. S. Asymmetric total syntheses of platensimycin. Angew. Chem. Int. Ed. 46, 3942–3945 (2007).

    CAS  Google Scholar 

  374. 374

    Nicolaou, K. C. et al. Total synthesis and antibacterial properties of carbaplatensimycin. J. Am. Chem. Soc. 129, 14850–14851 (2007).

    CAS  Google Scholar 

  375. 375

    Nicolaou, K. C., Lister, T., Denton, R. M., Montero, A. & Edmonds, D. J. Adamantaplatensimycin: a bioactive analogue of platensimycin. Angew. Chem. Int. Ed. 46, 4712–4714 (2007).

    CAS  Google Scholar 

  376. 376

    Heretsch, P. & Giannis, A. An efficient entry to amino-substituted resorcylic acid derivatives for the synthesis of platensimycin and analogues. Synthesis 2007, 2614–2616 (2007).

    Google Scholar 

  377. 377

    Kaliappan, K. P. & Ravikumar, V. An expedient enantioselective strategy for the oxatetracyclic core of platensimycin. Org. Lett. 9, 2417–2419 (2007).

    CAS  Google Scholar 

  378. 378

    Xing, S., Pan, W., Liu, C., Ren, J. & Wang, Z. Efficient construction of oxa- and aza-[n.2.1] skeletons: Lewis acid catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. Angew. Chem. Int. Ed. 49, 3215–3218 (2010).

    CAS  Google Scholar 

  379. 379

    Wang, J. & Sintim, H. O. Dialkylamino-2,4-dihydroxybenzoic acids as easily synthesized analogues of platensimycin and platencin with comparable antibacterial properties. Chem. Eur. J. 17, 3352–3357 (2011).

    CAS  Google Scholar 

  380. 380

    Beaulieu, M.-A., Guérard, K. C., Maertens, G., Sabot, C. & Canesi, S. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: scope, limitations, and applications. J. Org. Chem. 76, 9460–9471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  381. 381

    Tiefenbacher, K. & Mulzer, J. Protecting-group-free formal synthesis of platensimycin. Angew. Chem. Int. Ed. 46, 8074–8075 (2007).

    CAS  Google Scholar 

  382. 382

    Zou, Y., Chen, C.-H., Taylor, C. D., Foxman, B. M. & Snider, B. B. Formal synthesis of (±)-platensimycin. Org. Lett. 9, 1825–1828 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  383. 383

    Ghosh, A. K. & Xi, K. Enantioselective synthesis of (−)-platensimycin oxatetracyclic core by using an intramolecular Diels−Alder reaction. Org. Lett. 9, 4013–4016 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. 384

    Lalic, G. & Corey, E. J. An effective enantioselective route to the platensimycin core. Org. Lett. 9, 4921–4923 (2007).

    CAS  Google Scholar 

  385. 385

    Li, P., Payette, J. N. & Yamamoto, H. Enantioselective route to platensimycin: an intramolecular Robinson annulation approach. J. Am. Chem. Soc. 129, 9534–9535 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  386. 386

    Matsuo, J.-i., Takeuchi, K. & Ishibashi, H. Stereocontrolled formal synthesis of (±)-platensimycin. Org. Lett. 10, 4049–4052 (2008).

    CAS  Google Scholar 

  387. 387

    Kim, C. H., Jang, K. P., Choi, S. Y., Chung, Y. K. & Lee, E. A carbonyl ylide cycloaddition approach to platensimycin. Angew. Chem. Int. Ed. 47, 4009–4011 (2008).

    CAS  Google Scholar 

  388. 388

    McGrath, N. A., Bartlett, E. S., Sittihan, S. & Njardarson, J. T. A concise ring-expansion route to the compact core of platensimycin. Angew. Chem. Int. Ed. 48, 8543–8546 (2009).

    CAS  Google Scholar 

  389. 389

    Yun, S. Y., Zheng, J.-C. & Lee, D. Stereoelectronic effect for the selectivity in C−H insertion of alkylidene carbenes and its application to the synthesis of platensimycin. J. Am. Chem. Soc. 131, 8413–8415 (2009).

    CAS  Google Scholar 

  390. 390

    Ghosh, A. K. & Xi, K. Total synthesis of (−)-platensimycin, a novel antibacterial agent. J. Org. Chem. 74, 1163–1170 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  391. 391

    Magnus, P., Rivera, H. & Lynch, V. Concise formal total synthesis of platensimycin mediated by a stereoselective autoxidation and hydroxyl group directed conjugative reduction. Org. Lett. 12, 5677–5679 (2010).

    CAS  Google Scholar 

  392. 392

    Eey, S. T. C. & Lear, M. J. A bismuth(III)-catalyzed Friedel−Crafts cyclization and stereocontrolled organocatalytic approach to (−)-platensimycin. Org. Lett. 12, 5510–5513 (2010).

    CAS  Google Scholar 

  393. 393

    Oblak, E. Z. & Wright, D. L. Highly substituted oxabicyclic derivatives from furan: synthesis of (±)-platensimycin. Org. Lett. 13, 2263–2265 (2011).

    CAS  Google Scholar 

  394. 394

    Hirai, S. & Nakada, M. Enantioselective divergent approaches to both (−)-platensimycin and (−)-platencin. Tetrahedron 67, 518–530 (2011).

    CAS  Google Scholar 

  395. 395

    Ueda, Y., Iwahashi, K., Iguchi, K. & Ito, H. Enantioselective synthesis of the tetracyclic core of platensimycin. Synthesis 2011, 1532–1536 (2011).

    Google Scholar 

  396. 396

    Horii, S., Torihata, M., Nagasawa, T. & Kuwahara, S. Stereoselective approach to the racemic oxatetracyclic core of platensimycin. J. Org. Chem. 78, 2798–2801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  397. 397

    Zhu, L., Han, Y., Du, G. & Lee, C.-S. A bifunctional Lewis acid induced cascade cyclization to the tricyclic core of ent-kaurenoids and its application to the formal synthesis of (±)-platensimycin. Org. Lett. 15, 524–527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  398. 398

    Zhu, L. et al. Formal syntheses of (±)-platensimycin and (±)-platencin via a dual-mode Lewis acid induced cascade cyclization approach. J. Org. Chem. 78, 7912–7929 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  399. 399

    Eey, S. T. C. & Lear, M. J. Total synthesis of (−)-platensimycin by advancing oxocarbenium- and iminium-mediated catalytic methods. Chem. Eur. J. 20, 11556–11573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  400. 400

    Jiao, Z.-W. et al. Formal synthesis of (−)-platensimycin. Org. Chem. Front. 2, 913–916 (2015).

    CAS  Google Scholar 

  401. 401

    Wang, J. et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl. Acad. Sci. USA 104, 7612–7616 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  402. 402

    Jayasuriya, H. et al. Isolation and structure of platencin: a FabH and FabF dual inhibitor with potent broad-spectrum antibiotic activity. Angew. Chem. Int. Ed. 46, 4684–4688 (2007).

    CAS  Google Scholar 

  403. 403

    Nicolaou, K. C., Tria, G. S. & Edmonds, D. J. Total synthesis of platencin. Angew. Chem. Int. Ed. 47, 1780–1783 (2008).

    CAS  Google Scholar 

  404. 404

    Nicolaou, K. C., Toh, Q.-Y. & Chen, D. Y. K. An expedient asymmetric synthesis of platencin. J. Am. Chem. Soc. 130, 11292–11293 (2008).

    CAS  Google Scholar 

  405. 405

    Nicolaou, K. C., Toh, Q.-Y. & Chen, D. Y. K. An expedient asymmetric synthesis of platencin. J. Am. Chem. Soc. 130, 14016 (2008).

    CAS  Google Scholar 

  406. 406

    Nicolaou, K. C., Tria, G. S., Edmonds, D. J. & Kar, M. Total syntheses of (±)-platencin and (−)-platencin. J. Am. Chem. Soc. 131, 15909–15917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  407. 407

    Austin, K. A. B., Banwell, M. G. & Willis, A. C. A formal total synthesis of platencin. Org. Lett. 10, 4465–4468 (2008).

    CAS  Google Scholar 

  408. 408

    Hayashida, J. & Rawal, V. H. Total synthesis of (±)-platencin. Angew. Chem. Int. Ed. 47, 4373–4376 (2008).

    CAS  Google Scholar 

  409. 409

    Tiefenbacher, K. & Mulzer, J. Short formal synthesis of (−)-platencin. Angew. Chem. Int. Ed. 47, 6199–6200 (2008).

    CAS  Google Scholar 

  410. 410

    Yun, S. Y., Zheng, J.-C. & Lee, D. Concise synthesis of the tricyclic core of platencin. Angew. Chem. Int. Ed. 47, 6201–6203 (2008).

    CAS  Google Scholar 

  411. 411

    Waalboer, D. C. J., Schaapman, M. C., van Delft, F. L. & Rutjes, F. P. J. T. High-pressure entry into platencin. Angew. Chem. Int. Ed. 47, 6576–6578 (2008).

    CAS  Google Scholar 

  412. 412

    Tiefenbacher, K. & Mulzer, J. A nine-step total synthesis of (−)-platencin. J. Org. Chem. 74, 2937–2941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  413. 413

    Varseev, G. N. & Maier, M. E. Formal total synthesis of platencin. Angew. Chem. Int. Ed. 48, 3685–3688 (2009).

    CAS  Google Scholar 

  414. 414

    Barykina, O. V., Rossi, K. L., Rybak, M. J. & Snider, B. B. Synthesis and antibacterial properties of (−)-nor-platencin. Org. Lett. 11, 5334–5337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  415. 415

    Ghosh, A. K. & Xi, K. A symmetry-based concise formal synthesis of platencin, a novel lead against “superbugs”. Angew. Chem. Int. Ed. 48, 5372–5375 (2009).

    CAS  Google Scholar 

  416. 416

    Singh, V., Sahu, B. C., Bansal, V. & Mobin, S. M. Intramolecular cycloaddition in 6,6-spiroepoxycyclohexa-2,4-dienone: simple aromatics to (±)-platencin. Org. Biomol. Chem. 8, 4472–4481 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  417. 417

    Li, P. & Yamamoto, H. Formal synthesis of platencin. Chem. Commun. 46, 6294–6295 (2010).

    CAS  Google Scholar 

  418. 418

    Tiefenbacher, K., Gollner, A. & Mulzer, J. Syntheses and antibacterial properties of iso-platencin, Cl-iso-platencin and Cl-platencin: identification of a new lead structure. Chem. Eur. J. 16, 9616–9622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  419. 419

    Waalboer, D. C. J., Leenders, S. H. A. M., Schülin-Casonato, T., van Delft, F. L. & Rutjes, F. P. J. T. Total synthesis and antibiotic activity of dehydrohomoplatencin. Chem. Eur. J. 16, 11233–11236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  420. 420

    Hirai, S. & Nakada, M. An enantioselective approach to (−)-platencin via catalytic asymmetric intramolecular cyclopropanation. Tetrahedron Lett. 51, 5076–5079 (2010).

    CAS  Google Scholar 

  421. 421

    Leung, G. Y. C. et al. Total synthesis and biological evaluation of the Fab-inhibitory antibiotic platencin and analogues thereof. Eur. J. Org. Chem. 2011, 183–196 (2011).

    Google Scholar 

  422. 422

    Yoshimitsu, T., Nojima, S., Hashimoto, M. & Tanaka, T. Total synthesis of (±)-platencin. Org. Lett. 13, 3698–3701 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  423. 423

    Palanichamy, K., Subrahmanyam, A. V. & Kaliappan, K. P. A radical cyclization approach to the formal total syntheses of platencin. Org. Biomol. Chem. 9, 7877–7886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  424. 424

    Yadav, J. S., Goreti, R., Pabbaraja, S. & Sridhar, B. Short route to platencin. Org. Lett. 15, 3782–3785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  425. 425

    Chang, E. L., Schwartz, B. D., Draffan, A. G., Banwell, M. G. & Willis, A. C. A chemoenzymatic and fully stereocontrolled total synthesis of the antibacterial natural product (−)-platencin. Chem. Asian J. 10, 427–439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  426. 426

    Wang, J. et al. A concise formal synthesis of platencin. Org. Chem. Front. 2, 674–676 (2015).

    CAS  Google Scholar 

  427. 427

    Muhammad, R. N., Draffan, A. G., Banwell, M. G. & Willis, A. C. A second-generation chemoenzymatic total synthesis of platencin. Synlett 27, 61–66 (2016).

    CAS  Google Scholar 

  428. 428

    Sedmera, P., Podojil, M., Vokoun, J., Betina, V. & Nemec, P. 2,2′-Dimethoxy-4a,4a′-dehydrorugulosin (rugulin), a minor metabolite from Penicillium rugulosum. Folia Microbiol. 23, 64–67 (1978).

    CAS  Google Scholar 

  429. 429

    Betina, V. & Nemec, P. Spôsob prípravy antibiotika rugulínu a metabolitov skyrínu a rugulozínu z mikroorganizmu Penicillium rugulosum. Czechoslovakian patent No. 187049 (1978).

  430. 430

    Nicolaou, K. C., Papageorgiou, C. D., Piper, J. L. & Chadha, R. K. The cytoskyrin cascade: a facile entry into cytoskyrin A, deoxyrubroskyrin, rugulin, skyrin, and flavoskyrin model systems. Angew. Chem. Int. Ed. 44, 5846–5851 (2005).

    CAS  Google Scholar 

  431. 431

    Nicolaou, K. C., Lim, Y. H., Papageorgiou, C. D. & Piper, J. L. Total synthesis of (+)-rugulosin and (+)-2,2′-epi-cytoskyrin A through cascade reactions. Angew. Chem. Int. Ed. 44, 7917–7921 (2005).

    CAS  Google Scholar 

  432. 432

    Nicolaou, K. C., Lim, Y. H., Piper, J. L. & Papageorgiou, C. D. Total syntheses of 2,2′-epi-cytoskyrin A, rugulosin, and the alleged structure of rugulin. J. Am. Chem. Soc. 129, 4001–4013 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  433. 433

    Brady, S. F., Singh, M. P., Janso, J. E. & Clardy, J. Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org. Lett. 2, 4047–4049 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  434. 434

    Agusta, A., Ohashi, K. & Shibuya, H. Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem. Pharm. Bull. 54, 579–582 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  435. 435

    Kushida, H. et al (Banyu Pharmaceuticals Co., Ltd.). Antitumor substance BE-43472 JP08143569 (1996).

  436. 436

    Socha, A. M., Garcia, D., Sheffer, R. & Rowley, D. C. Antibiotic bisanthraquinones produced by a streptomycete isolated from a cyanobacterium associated with Ecteinascidia turbinata. J. Nat. Prod. 69, 1070–1073 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  437. 437

    Socha, A. M., LaPlante, K. L. & Rowley, D. C. New bisanthraquinone antibiotics and semi-synthetic derivatives with potent activity against clinical Staphylococcus aureus and Enterococcus faecium isolates. Biorg. Med. Chem. 14, 8446–8454 (2006).

    CAS  Google Scholar 

  438. 438

    Nicolaou, K. C., Lim, Y. H. & Becker, J. Total synthesis and absolute configuration of the bisanthraquinone antibiotic BE-43472B. Angew. Chem. Int. Ed. 48, 3444–3448 (2009).

    CAS  Google Scholar 

  439. 439

    Nicolaou, K. C. et al. Total synthesis and biological evaluation of (+)- and (−)-bisanthraquinone antibiotic BE-43472B and related compounds. J. Am. Chem. Soc. 131, 14812–14826 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  440. 440

    Hayden, A. E. et al. Origins of regioselectivity of Diels−Alder reactions for the synthesis of bisanthraquinone antibiotic BE-43472B. J. Org. Chem. 75, 922–928 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  441. 441

    Yamashita, Y., Hirano, Y., Takada, A., Takikawa, H. & Suzuki, K. Total synthesis of the antibiotic BE-43472B. Angew. Chem. Int. Ed. 52, 6658–6661 (2013).

    CAS  Google Scholar 

  442. 442

    Isaka, M. et al. Hirsutellones A–E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron 61, 5577–5583 (2005).

    CAS  Google Scholar 

  443. 443

    Nicolaou, K. C., Sarlah, D., Wu, T. R. & Zhan, W. Total synthesis of hirsutellone B. Angew. Chem. Int. Ed. 48, 6870–6874 (2009).

    CAS  Google Scholar 

  444. 444

    Nicolaou, K. C., Sun, Y.-P., Sarlah, D., Zhan, W. & Wu, T. R. Bioinspired synthesis of hirsutellones A, B, and C. Org. Lett. 13, 5708–5710 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  445. 445

    Tilley, S. D., Reber, K. P. & Sorensen, E. J. A rapid, asymmetric synthesis of the decahydrofluorene core of the hirsutellones. Org. Lett. 11, 701–703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  446. 446

    Huang, M., Huang, C. & Liu, B. Studies toward the total synthesis of the hirsutellones. Tetrahedron Lett. 50, 2797–2800 (2009).

    CAS  Google Scholar 

  447. 447

    Halvorsen, G. T. & Roush, W. R. Stereoselective synthesis of the decahydrofluorene core of the hirsutellones. Tetrahedron Lett. 52, 2072–2075 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  448. 448

    Song, L., Huang, C., Huang, M. & Liu, B. Toward the synthesis of hirsutellone B via an intramolecular Diels–Alder/ketene-trapping strategy. Tetrahedron 71, 3603–3608 (2015).

    CAS  Google Scholar 

  449. 449

    Reber, K. P., Tilley, S. D., Carson, C. A. & Sorensen, E. J. Toward a synthesis of hirsutellone B by the concept of double cyclization. J. Org. Chem. 78, 9584–9607 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  450. 450

    Uchiro, H., Kato, R., Arai, Y., Hasegawa, M. & Kobayakawa, Y. Total synthesis of hirsutellone B via Ullmann-type direct 13-membered macrocyclization. Org. Lett. 13, 6268–6271 (2011).

    CAS  Google Scholar 

  451. 451

    Waring, P., Eichner, R. D. & Müllbacher, A. The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med. Res. Rev. 8, 499–524 (1988).

    CAS  Google Scholar 

  452. 452

    Kamei, H. et al. Piperafizines A and B, potentiators of cytotoxicity of vincristine. J. Antibiot. 43, 1018–1020 (1990).

    CAS  Google Scholar 

  453. 453

    Waring, P. & Beaver, J. Gliotoxin and related epipolythiodioxopiperazines. Gen. Pharmacol. 27, 1311–1316 (1996).

    CAS  Google Scholar 

  454. 454

    Bull, S. D., Davies, S. G., Parkin, R. M. & Sanchez-Sancho, F. The biosynthetic origin of diketopiperazines derived from D-proline. J. Chem. Soc., Perkin Trans. 1 2313–2320 (1998).

  455. 455

    Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. 1, 143–145 (2005).

    CAS  Google Scholar 

  456. 456

    Gardiner, D. M., Waring, P. & Howlett, B. J. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151, 1021–1032 (2005).

    CAS  Google Scholar 

  457. 457

    Řezanka, T., Sobotka, M., Spížek, J. & Sigler, K. Pharmacologically active sulfur-containing compounds. Antiinfect. Agents Med. Chem. 5, 187–224 (2006).

    Google Scholar 

  458. 458

    Isham, C. R. et al. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109, 2579–2588 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  459. 459

    Ding, G. et al. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus Pestalotiopsis theae. J. Nat. Prod. 71, 1861–1865 (2008).

    CAS  Google Scholar 

  460. 460

    Huang, R., Zhou, X., Xu, T., Yang, X. & Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers. 7, 2809–2829 (2010).

    CAS  Google Scholar 

  461. 461

    Cornacchia, C. et al. 2,5-Diketopiperazines as neuroprotective agents. Mini-Rev. Med. Chem. 12, 2–12 (2012).

    CAS  Google Scholar 

  462. 462

    Jiang, C.-S., Müller, W. E. G., Schröder, H. C. & Guo, Y.-W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev. 112, 2179–2207 (2012).

    CAS  Google Scholar 

  463. 463

    Borthwick, A. D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112, 3641–3716 (2012).

    CAS  Google Scholar 

  464. 464

    Nicolaou, K. C. et al. Synthesis and biological evaluation of epidithio-, epitetrathio-, and bis-(methylthio)diketopiperazines: synthetic methodology, enantioselective total synthesis of epicoccin G, 8,8′-epi-ent-rostratin B, gliotoxin, gliotoxin G, emethallicin E, and haematocin and discovery of new antiviral and antimalarial agents. J. Am. Chem. Soc. 134, 17320–17332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  465. 465

    Guo, H. et al. Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J. Nat. Prod. 72, 2115–2119 (2009).

    CAS  Google Scholar 

  466. 466

    Wang, J.-M. et al. Thiodiketopiperazines produced by the endophytic fungus Epicoccum nigrum. J. Nat. Prod. 73, 1240–1249 (2010).

    CAS  Google Scholar 

  467. 467

    Nicolaou, K. C., Totokotsopoulos, S., Giguère, D., Sun, Y.-P. & Sarlah, D. Total synthesis of epicoccin G. J. Am. Chem. Soc. 133, 8150–8153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  468. 468

    Tan, R. X., Jensen, P. R., Williams, P. G. & Fenical, W. Isolation and structure assignments of rostratins A−D, cytotoxic disulfides produced by the marine-derived fungus Exserohilum rostratum. J. Nat. Prod. 67, 1374–1382 (2004).

    CAS  Google Scholar 

  469. 469

    Kawahara, N., Nozawa, K., Yamazaki, M., Nakajima, S. & Kawai, K.-i. Novel epidithiodioxopiperazines, emethallicins E and F, from Emericella heterothallica. Heterocycles 30, 507–515 (1990).

    CAS  Google Scholar 

  470. 470

    Trown, P. W. Antiviral activity of N,N'-dimethyl-epidithiapiperazinedione, a synthetic compound related to the gliotoxins, LL-S88α and β, chetomin and the sporidesmins. Biochem. Biophys. Res. Commun. 33, 402–407 (1968).

    CAS  Google Scholar 

  471. 471

    Shimazaki, N., Shima, I., Hemmi, K., Tsurumi, Y. & Hashimoto, M. Diketopiperazine derivatives, a new series of platelet-activating factor inhibitors. Chem. Pharm. Bull. 35, 3527–3530 (1987).

    CAS  Google Scholar 

  472. 472

    Poisel, H. & Schmidt, U. Synthesis of 2,5-piperazinediones having sulfur-containing bridges between C-3 and C-6. Angew. Chem. Int. Ed. Engl. 10, 130–131 (1971).

    CAS  Google Scholar 

  473. 473

    Poisel, H. & Schmidt, U. Syntheseversuche in der Reihe der 3.6-Epidithio-2.5-dioxo-piperazin-Antibiotika Gliotoxin, Sporidesmin, Aranotin und Chaetocin, II. Chem. Ber. 104, 1714–1721 (1971).

    CAS  Google Scholar 

  474. 474

    Öhler, E., Poisel, H., Tataruch, F. & Schmidt, U. Syntheseversuche in der Reihe der 3.6-Epidithio-2.5-dioxo-piperazin-Antibiotika Gliotoxin, Sporidesmin, Aranotin und Chaetocin, IV. Synthese des Epidithio-L-prolyl-L-prolinanhydrids. Chem. Ber 105, 635–641 (1972).

    PubMed  PubMed Central  Google Scholar 

  475. 475

    Kishi, Y., Fukuyama, T. & Nakatsuka, S. New method for the synthesis of epidithiodiketopiperazines. J. Am. Chem. Soc. 95, 6490–6492 (1973).

    CAS  Google Scholar 

  476. 476

    Yoshimura, J., Nakamura, H. & Matsunari, K. A new synthesis of 3,6-dialkyl-1,4-dimethyl-3,6-epithio- and -3,6-epidithio-2,5-piperazinediones. Bull. Chem. Soc. Jpn. 48, 605–609 (1975).

    CAS  Google Scholar 

  477. 477

    Overman, L. E. & Sato, T. Construction of epidithiodioxopiperazines by directed oxidation of hydroxyproline-derived dioxopiperazines. Org. Lett. 9, 5267–5270 (2007).

    CAS  Google Scholar 

  478. 478

    Scherer, O. & Schmidt, M. Abbau von Schwefel mit Natrium-bis-(trimethylsilyl)-amid. Naturwissenschaften 50, 302 (1963).

    Google Scholar 

  479. 479

    Schmidt, M. & Potschka, V. Über die Reaktion von Natriumphenylazetylid mit elementarem Schwefel. Naturwissenschaften 50, 302 (1963).

    Google Scholar 

  480. 480

    Scherer, O. & Schmidt, M. Zur Frage der Existenz eines silylsubstituierten Amino-rhodans. Z. Naturforsch. B 18, 415–416 (1963).

    Google Scholar 

  481. 481

    Siivari, J., Maaninen, A., Haapaniemi, E., Laitinen Risto, S. & Chivers, T. Formation and identification of bis[bis(trimethylsilyl)amino]triand tetrachalcogenides. Z. Naturforsch. B 50, 1575–1582 (1995).

    CAS  Google Scholar 

  482. 482

    Iwasa, E. et al. Total synthesis of (+)-chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J. Am. Chem. Soc. 132, 4078–4079 (2010).

    CAS  Google Scholar 

  483. 483

    Kim, J. & Movassaghi, M. General approach to epipolythiodiketopiperazine alkaloids: total synthesis of (+)-chaetocins A and C and (+)-12,12′-dideoxychetracin A. J. Am. Chem. Soc. 132, 14376–14378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  484. 484

    Nicolaou, K. C., Giguère, D., Totokotsopoulos, S. & Sun, Y.-P. A practical sulfenylation of 2,5-diketopiperazines. Angew. Chem. Int. Ed. 51, 728–732 (2012).

    CAS  Google Scholar 

  485. 485

    Gross, U., Nieger, M. & Bräse, S. A unified strategy targeting the thiodiketopiperazine mycotoxins exserohilone, gliotoxin, the epicoccins, the epicorazines, rostratin A and aranotin. Chem. Eur. J 16, 11624–11631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  486. 486

    Lee, J . Part I. Synthetic investigations of heterocyclic natural and unnatural compounds Part II. New approach to latent fingerprint detection on paper. PhD thesis, Univ. Pennsylvania (2014).

  487. 487

    Liu, Z. & Rainier, J. D. Ring-opening/ring-closing metathesis (RORCM) reactions of 7-azanorbornene derivatives. An entry into perhydroindolines. Org. Lett. 8, 459–462 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  488. 488

    Liu, Z . High regioselective ring-opening/cross metathesis of norbornene derivatives and ring-opening/ring-closing metathesis and their applications towards total synthesis of rostratins and synthesis of acid sensing ion channel inhibitors. PhD thesis, Univ. Utah (2007).

  489. 489

    Ruff, B. M. et al. A combined vinylogous Mannich/Diels–Alder approach for the stereoselective synthesis of highly functionalized hexahydroindoles. Eur. J. Org. Chem 2011, 6558–6566 (2011).

    CAS  Google Scholar 

  490. 490

    Zhong, S., Sauter, P. F., Nieger, M. & Bräse, S. Stereoselective synthesis of highly functionalized hydroindoles as building blocks for rostratins B–D and synthesis of the pentacyclic core of rostratin C. Chem. Eur. J. 21, 11219–11225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  491. 491

    Wang, H . Enantioselective total synthesis of diketopiperazinecontaining natural products: (–)-lansai B, (+)-nocardioazines A and B, and (–)-acetylapoaranotin. PhD thesis, California Institute of Technology (2015).

  492. 492

    Zheng, C.-J., Yu, H.-E., Kim, E.-H. & Kim, W.-G. Viridicatumtoxin B, a new anti-MRSA agent from Penicillium sp. FR11. J. Antibiot. 61, 633–637 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  493. 493

    Inokoshi, J. et al. Spirohexalines, new inhibitors of bacterial undecaprenyl pyrophosphate synthase, produced by Penicillium brasilianum FKI-3368. J. Antibiot. 66, 37–41 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  494. 494

    Koyama, N., Inokoshi, J. & Tomoda, H. Anti-infectious agents against MRSA. Molecules 18, 204–224 (2013).

    CAS  Google Scholar 

  495. 495

    Nicolaou, K. C., Liu, G., Beabout, K., McCurry, M. D. & Shamoo, Y. Asymmetric alkylation of anthrones, enantioselective total synthesis of (−)- and (+)-viridicatumtoxins B and analogues thereof: absolute configuration and potent antibacterial agents. J. Am. Chem. Soc. 139, 3736–3746 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  496. 496

    Sugie, Y. et al. New pyrrolizidinone antibiotics CJ-16,264 and CJ-16,367. J. Antibiot. 54, 917–925 (2001).

    CAS  Google Scholar 

  497. 497

    Nicolaou, K. C. et al. Total synthesis and structural revision of antibiotic CJ-16,264. Angew. Chem. Int. Ed. 54, 9203–9208 (2015).

    CAS  Google Scholar 

  498. 498

    Lambert, T. H. & Danishefsky, S. J. Total synthesis of UCS1025A. J. Am. Chem. Soc. 128, 426–427 (2006).

    CAS  Google Scholar 

  499. 499

    World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed (2017) Available at: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/.

Download references

Acknowledgements

KCN thanks his students and post-doctoral fellows who contributed decisively to the achievements described in this article and to express his unlimited gratitude to his wife Georgette, daughter Colette, sons Alex, Christopher and Paul and grandchildren Nicolas, Gigi, Eleni, Ava Alexandra and Kyri for their unconditional love and support. We are grateful to the National Institutes of Health (USA), the Cancer Prevention & Research Institute of Texas (CPRIT), and The Welch Foundation (grant C-1819) for their generous funding of our research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyriacos C Nicolaou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nicolaou, K., Rigol, S. A brief history of antibiotics and select advances in their synthesis. J Antibiot 71, 153–184 (2018). https://doi.org/10.1038/ja.2017.62

Download citation

Further reading

Search

Quick links