Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical Studies and Practice

Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial



The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown.


To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight loss setting.


Data analysis was conducted among 569 overweight and obese participants aged 30–70 years with normal thyroid function participating in the 2-year Prevention of Obesity Using Novel Dietary Strategies (POUNDS) LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine (T3), free thyroxine (T4), total T3, total T4 and thyroid-stimulating hormone (TSH)), anthropometric measurements and biochemical parameters were assessed at baseline, 6 months and 24 months.


Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6 to 24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss±s.e. was −3.87±0.9 vs −5.39±0.9 kg for free T3 (Ptrend=0.02) and −4.09±0.9 vs −5.88±0.9 kg for free T4 (Ptrend=0.004). The thyroid hormones did not predict weight regain in 6–24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides and leptin at 6 months and 24 months (all P<0.05).


In this diet-induced weight loss setting, higher baseline free T3 and free T4 predicted more weight loss, but not weight regain among overweight and obese adults with normal thyroid function. These findings reveal a novel role of thyroid hormones in body weight regulation and may help identify individuals more responsive to weight loss diets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2


  1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M . Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011; 378: 815–825.

    Article  Google Scholar 

  2. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011; 378: 804–814.

    Article  Google Scholar 

  3. Elfhag K, Rossner S . Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev 2005; 6: 67–85.

    Article  CAS  Google Scholar 

  4. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597–1604.

    Article  CAS  Google Scholar 

  5. Svetkey LP, Stevens VJ, Brantley PJ, Appel LJ, Hollis JF, Loria CM et al. Comparison of strategies for sustaining weight loss: the weight loss maintenance randomized controlled trial. JAMA 2008; 299: 1139–1148.

    Article  CAS  Google Scholar 

  6. Franz MJ, VanWormer JJ, Crain AL, Boucher JL, Histon T, Caplan W et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc 2007; 107: 1755–1767.

    Article  Google Scholar 

  7. Maclean PS, Bergouignan A, Cornier MA, Jackman MR . Biology's response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol 2011; 301: R581–R600.

    Article  CAS  Google Scholar 

  8. King NA, Hopkins M, Caudwell P, Stubbs RJ, Blundell JE . Individual variability following 12 weeks of supervised exercise: identification and characterization of compensation for exercise-induced weight loss. Int J Obes (Lond) 2008; 32: 177–184.

    Article  CAS  Google Scholar 

  9. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009; 360: 859–873.

    Article  CAS  Google Scholar 

  10. Reinehr T . Obesity and thyroid function. Mol Cell Endocrinol 2010; 316: 165–171.

    Article  CAS  Google Scholar 

  11. Mullur R, Liu YY, Brent GA . Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94: 355–382.

    Article  CAS  Google Scholar 

  12. Hoogwerf BJ, Nuttall FQ . Long-term weight regulation in treated hyperthyroid and hypothyroid subjects. Am J Med 1984; 76: 963–970.

    Article  CAS  Google Scholar 

  13. Fox CS, Pencina MJ, D'Agostino RB, Murabito JM, Seely EW, Pearce EN et al. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med 2008; 168: 587–592.

    Article  Google Scholar 

  14. Ortega E, Pannacciulli N, Bogardus C, Krakoff J . Plasma concentrations of free triiodothyronine predict weight change in euthyroid persons. Am J Clin Nutr 2007; 85: 440–445.

    Article  CAS  Google Scholar 

  15. Bjergved L, Jorgensen T, Perrild H, Laurberg P, Krejbjerg A, Ovesen L et al. Thyroid function and body weight: a community-based longitudinal study. PLoS One 2014; 9: e93515.

    Article  Google Scholar 

  16. Svare A, Nilsen TI, Bjoro T, Asvold BO, Langhammer A . Serum TSH related to measures of body mass: longitudinal data from the HUNT Study, Norway. Clin Endocrinol (Oxf) 2011; 74: 769–775.

    Article  CAS  Google Scholar 

  17. Nyrnes A, Jorde R, Sundsfjord J . Serum TSH is positively associated with BMI. Int J Obes (Lond) 2006; 30: 100–105.

    Article  CAS  Google Scholar 

  18. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467–472.

    Article  CAS  Google Scholar 

  19. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002; 87: 489–499.

    Article  CAS  Google Scholar 

  20. Tirosh A, de Souza RJ, Sacks F, Bray GA, Smith SR, LeBoff MS . Sex differences in the effects of weight loss diets on bone mineral density and body composition: POUNDS LOST trial. J Clin Endocrinol Metab 2015; 100: 2463–2471.

    Article  CAS  Google Scholar 

  21. de Jonge L, Bray GA, Smith SR, Ryan DH, de Souza RJ, Loria CM et al. Effect of diet composition and weight loss on resting energy expenditure in the POUNDS LOST study. Obesity (Silver Spring) 2012; 20: 2384–2389.

    Article  CAS  Google Scholar 

  22. Baecke JA, Burema J, Frijters JE . A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982; 36: 936–942.

    Article  CAS  Google Scholar 

  23. Roef GL, Rietzschel ER, Van Daele CM, Taes YE, De Buyzere ML, Gillebert TC et al. Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid 2014; 24: 223–231.

    Article  CAS  Google Scholar 

  24. Bassols J, Prats-Puig A, Soriano-Rodriguez P, Garcia-Gonzalez MM, Reid J, Martinez-Pascual M et al. Lower free thyroxin associates with a less favorable metabolic phenotype in healthy pregnant women. J Clin Endocrinol Metab 2011; 96: 3717–3723.

    Article  CAS  Google Scholar 

  25. Shon HS, Jung ED, Kim SH, Lee JH . Free T4 is negatively correlated with body mass index in euthyroid women. Korean J Intern Med 2008; 23: 53–57.

    Article  CAS  Google Scholar 

  26. Makepeace AE, Bremner AP, O'Leary P, Leedman PJ, Feddema P, Michelangeli V et al. Significant inverse relationship between serum free T4 concentration and body mass index in euthyroid subjects: differences between smokers and nonsmokers. Clin Endocrinol (Oxf) 2008; 69: 648–652.

    Article  CAS  Google Scholar 

  27. Taylor PN, Richmond R, Davies N, Sayers A, Stevenson K, Woltersdorf W et al. Paradoxical relationship between body mass index and thyroid hormone levels: a study using Mendelian randomization. J Clin Endocrinol Metab 2016; 101: 730–738.

    Article  CAS  Google Scholar 

  28. Kitahara CM, Platz EA, Ladenson PW, Mondul AM, Menke A, de Gonzalez AB . Body fatness and markers of thyroid function among U.S. men and women. PLoS ONE 2012; 7: e34979.

    Article  CAS  Google Scholar 

  29. Knudsen N, Laurberg P, Rasmussen LB, Bulow I, Perrild H, Ovesen L et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 2005; 90: 4019–4024.

    Article  CAS  Google Scholar 

  30. Lee JJ, Pedley A, Marqusee E, Sutherland P, Hoffmann U, Massaro JM et al. Thyroid function and cardiovascular disease risk factors in euthyroid adults: a cross-sectional and longitudinal study. Clin Endocrinol (Oxf) 2016; 85: 932–941.

    Article  CAS  Google Scholar 

  31. Manji N, Boelaert K, Sheppard MC, Holder RL, Gough SC, Franklyn JA . Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin Endocrinol (Oxf) 2006; 64: 125–128.

    Article  CAS  Google Scholar 

  32. Agnihothri RV, Courville AB, Linderman JD, Smith S, Brychta R, Remaley A et al. Moderate weight loss is sufficient to affect thyroid hormone homeostasis and inhibit its peripheral conversion. Thyroid 2014; 24: 19–26.

    Article  CAS  Google Scholar 

  33. Wolters B, Lass N, Reinehr T . TSH and free triiodothyronine concentrations are associated with weight loss in a lifestyle intervention and weight regain afterwards in obese children. Eur J Endocrinol 2013; 168: 323–329.

    Article  CAS  Google Scholar 

  34. Corcoran JM, Eastman CJ, Carter JN, Lazarus L . Circulating thyroid hormone levels in children. Arch Dis Child 1977; 52: 716–720.

    Article  CAS  Google Scholar 

  35. Westgren U, Burger A, Ingemansson S, Melander A, Tibblin S, Wahlin E . Blood levels of 3,5,3'-triiodothyronine and thyroxine: differences between children, adults, and elderly subjects. Acta Med Scand 1976; 200: 493–495.

    Article  CAS  Google Scholar 

  36. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 2015; 25: 954–961.

    Article  CAS  Google Scholar 

  37. Molnar D, Schutz Y . The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr 1997; 156: 376–381.

    Article  CAS  Google Scholar 

  38. Saltzman E, Roberts SB . The role of energy expenditure in energy regulation: findings from a decade of research. Nutr Rev 1995; 53: 209–220.

    Article  CAS  Google Scholar 

  39. Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R et al. Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity (Silver Spring) 2016; 24: 1612–1619.

    Article  Google Scholar 

  40. Haber RS, Loeb JN . Stimulation of potassium efflux in rat liver by a low dose of thyroid hormone: evidence for enhanced cation permeability in the absence of Na,K-ATPase induction. Endocrinology 1986; 118: 207–211.

    Article  CAS  Google Scholar 

  41. Silva JE . Thermogenic mechanisms and their hormonal regulation. Physiol Rev 2006; 86: 435–464.

    Article  CAS  Google Scholar 

Download references


We thank the participants in the trial for their dedication and contribution to the research. This research was supported by NIH grants ES022981, ES021372, the National Heart, Lung and Blood Institute (HL073286), and the General Clinical Research Center, National Institutes of Health (RR-02635). Qi Sun was supported by a career development award, R00-HL098459, from the National Heart, Lung and Blood Institute. Gang Liu was supported by the International Postdoctoral Exchange Fellowship Program 2015 by the Office of China Postdoctoral Council.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Q Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liang, L., Bray, G. et al. Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial. Int J Obes 41, 878–886 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links