Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity

Abstract

Objective:

Childhood obesity is a strong risk factor for adult obesity and metabolic diseases, including type 2 diabetes and cardiovascular disease. Early lifestyle intervention in children with obesity reduces future disease risk. The objective of this study is to identify metabolic signatures associated with lifestyle intervention in prepubertal children with obesity.

Methods:

Thirty-five prepubertal children (7–10 years) with obesity (body mass index (BMI)>2 standard deviations) were enrolled in the study and participated in a 6-month-long lifestyle intervention program. Physiological and biochemical data and blood samples were collected both at baseline and after the intervention. A liquid chromatography–mass spectrometry (LC–MS)-based metabolomics approach was applied to obtain a comprehensive profiling of plasma samples, identifying 2581 distinct metabolite. Principal component analysis (PCA) was performed to consolidate all features into 8 principal components. Associations between metabolites and physiological and biochemical variables were investigated.

Results:

The intervention program significantly decreased mean (95% CI) BMI standard deviation score from 3.56 (3.29–3.84) to 3.11 (2.88–3.34) (P<0.001). PCA identified one component (PC1) significantly altered by the intervention (Bonferroni adjusted P=0.008). A sphingolipid metabolism-related signature was identified as the major contributor to PC1. Sphingolipid metabolites were decreased by the intervention, and included multiple sphingomyelin, ceramide, glycosylsphingosine and sulfatide species. Changes in several sphingolipid metabolites were associated with intervention-induced improvements in HbA1c levels.

Conclusions:

Decreased circulating sphingolipid-related metabolites were associated with lifestyle intervention in prepubertal children with obesity, and correlated to improvements in HbA1c.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766–781.

    PubMed  PubMed Central  Google Scholar 

  2. Forster M, Veerman JL, Barendregt JJ, Vos T . Cost-effectiveness of diet and exercise interventions to reduce overweight and obesity. Int J Obes 2011; 35: 1071–1078.

    Article  CAS  Google Scholar 

  3. Gluckman PD, Hanson M, Zimmet P, Forrester T . Losing the war against obesity: the need for a developmental perspective. Sci Transl Med 2011; 3: 93cm19.

    Article  PubMed  Google Scholar 

  4. Kahn R, Davidson MB . The reality of type 2 diabetes prevention. Diabetes Care 2014; 37: 943–949.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ . Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev 2008; 9: 474–488.

    Article  CAS  PubMed  Google Scholar 

  6. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med 2011; 365: 1876–1885.

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham SA, Kramer MR, Narayan KM . Incidence of childhood obesity in the United States. N Engl J Med 2014; 370: 403–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hannon TS, Janosky J, Arslanian SA . Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 2006; 60: 759–763.

    Article  CAS  PubMed  Google Scholar 

  9. Reinehr T, Wolters B, Knop C, Lass N, Holl RW . Strong effect of pubertal status on metabolic health in obese children: a longitudinal study. J Clin Endocrinol Metab 2015; 100: 301–308.

    Article  CAS  PubMed  Google Scholar 

  10. Ball GDC, Huang TTK, Gower BA, Cruz ML, Shaibi GQ, Weigensberg MJ et al. Longitudinal changes in insulin sensitivity, insulin secretion, and β-cell function during puberty. J Pediatr 2006; 148: 16–22.

    Article  CAS  PubMed  Google Scholar 

  11. Patti GJ, Yanes O, Siuzdak G . Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012; 13: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM et al. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab 2016; 5: 926–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ejaz A, Martinez-Guino L, Goldfine AB, Ribas-Aulinas F, De Nigris V, Ribo S et al. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes 2016; 65: 902–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walford GA, Ma Y, Clish C, Florez JC, Wang TJ, Gerszten RE et al. Metabolite profiles of diabetes incidence and intervention response in the diabetes prevention program. Diabetes 2016; 65: 1424–1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32: 1678–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH . Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One 2010; 5: e15234.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perng W, Gillman MW, Fleisch AF, Michalek RD, Watkins SM, Isganaitis E et al. Metabolomic profiles and childhood obesity. Obesity 2014; 22: 2570–2578.

    CAS  PubMed  Google Scholar 

  19. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr 2015; 102: 256–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y et al. Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts 2012; 5: 660–670.

    Article  CAS  PubMed  Google Scholar 

  21. Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH et al. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 2012; 35: 605–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U et al. Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr 2015; 54: 173–181.

    Article  CAS  PubMed  Google Scholar 

  23. Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B et al. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children. J Diabetes Res 2016; 2016: 2108909.

    Article  PubMed  Google Scholar 

  24. Serra-Majem L, Ribas L, Ngo J, Ortega RM, García A, Pérez-Rodrigo C et al. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr 2004; 7: 931–935.

    Article  PubMed  Google Scholar 

  25. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G . XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006; 78: 779–787.

    Article  CAS  PubMed  Google Scholar 

  26. Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O . A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2012; 2: 775–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41: D801–D807.

    Article  CAS  PubMed  Google Scholar 

  28. Lopez-Ibanez J, Pazos F, Chagoyen M . MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res 2016; 44: W201–W204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007; 3: 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH et al. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am J Physiol Endocrinol Metab 2015; 309: E398–E408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, DeFronzo RA et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58: 337–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez X, Goldfine AB, Holland WL, Gordillo R, Scherer PE . Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J Pediatr Endocrinol Metab 2013; 26: 995.

    Article  CAS  PubMed  Google Scholar 

  33. Eloranta AM, Lindi V, Schwab U, Tompuri T, Kiiskinen S, Lakka HM et al. Dietary factors associated with overweight and body adiposity in Finnish children aged 6-8 years: the PANIC Study. Int J Obes 2012; 36: 950–955.

    Article  CAS  Google Scholar 

  34. Reinehr T, Lass N, Toschke C, Rothermel J, Lanzinger S, Holl RW . Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J Clin Endocrinol Metab 2016; 101: 3171–3179.

    Article  CAS  PubMed  Google Scholar 

  35. Blüher S, Petroff D, Wagner A, Warich K, Gausche R, Klemm T et al. The one year exercise and lifestyle intervention program KLAKS: Effects on anthropometric parameters, cardiometabolic risk factors and glycemic control in childhood obesity. Metabolism 2014; 63: 422–430.

    Article  PubMed  Google Scholar 

  36. Pedrosa C, Oliveira BMPM, Albuquerque I, Simões-Pereira C, Vaz-de-Almeida MD, Correia F . Markers of metabolic syndrome in obese children before and after 1-year lifestyle intervention program. Eur J Nutr 2011; 50: 391–400.

    Article  CAS  PubMed  Google Scholar 

  37. Meikle PJ, Summers SA . Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13: 79–91.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 2012; 61: 1848–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 2009; 119: 1871–1879.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ussher JR, Koves TR, Cadete VJ, Zhang L, Jaswal JS, Swyrd SJ et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 2010; 59: 2453–2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chatterjee S, Bedja D, Mishra S, Amuzie C, Avolio A, Kass DA et al. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation 2014; 129: 2403–2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xia JY, Holland WL, Kusminski CM, Sun K, Sharma AX, Pearson MJ et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab 2015; 22: 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaurasia B, Kaddai VA, Lancaster GI, Henstridge DC, Sriram S, Galam DL et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab 2016; 24: 820–834.

    Article  CAS  PubMed  Google Scholar 

  44. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007; 5: 167–179.

    Article  CAS  PubMed  Google Scholar 

  45. Oberbach A, von Bergen M, Bluher S, Lehmann S, Till H . Combined serum proteomic and metabonomic profiling after laparoscopic sleeve gastrectomy in children and adolescents. J Laparoendosc Adv Surg Tech A 2012; 22: 184–188.

    Article  PubMed  Google Scholar 

  46. Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR, Schauer PR et al. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity 2011; 19: 2235–2240.

    Article  CAS  PubMed  Google Scholar 

  47. Kien CL, Bunn JY, Poynter ME, Stevens R, Bain J, Ikayeva O et al. A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes 2013; 62: 1054–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lankinen M, Schwab U, Kolehmainen M, Paananen J, Nygren H, Seppanen-Laakso T et al. A healthy nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J Nutr 2016; 146: 662–672.

    Article  CAS  Google Scholar 

  49. Mastrangelo A, Martos-Moreno GA, Garcia A, Barrios V, Ruperez FJ, Chowen JA et al. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int J Obes 2016; 40: 1494–1502.

    Article  CAS  Google Scholar 

  50. Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med 2011; 3: 80re82.

    Article  Google Scholar 

  51. Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia 2015; 58: 2324–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012; 55: 321–330.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very thankful for the families and children that voluntarily participated in the study. We are indebted to the ‘Biobanc de l’Hospital Infantil Sant Joan de Déu per a la Investigació’ integrated in the Spanish Biobank Network of ISCIII for sample processing and procurement. This work was supported by the Seventh Framework Programme Marie Curie FP7-PEOPLE-2011-CIG and the Spanish Government (Ministerio de Economía y Competitividad, RYC2010-06789) to CL.

Author contributions

MJL-W, JCJ-C, MR-K and CL designed the study, analyzed the data and wrote the manuscript; MJL-W, ML and MR-K implemented the intervention and collected data; OY and SS performed the metabolomics analysis; DC performed the statistical analysis; all authors were involved in editing the paper and had final approval of the submitted version. MJL-W, MR-K and CL had full access to the data in the study and final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Lerin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal-Witt, M., Ramon-Krauel, M., Samino, S. et al. Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity. Int J Obes 42, 72–78 (2018). https://doi.org/10.1038/ijo.2017.201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.201

This article is cited by

Search

Quick links