Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Cathelicidin suppresses lipid accumulation and hepatic steatosis by inhibition of the CD36 receptor

Abstract

Background and objectives:

Obesity is a global epidemic which increases the risk of the metabolic syndrome. Cathelicidin (LL-37 and mCRAMP) is an antimicrobial peptide with an unknown role in obesity. We hypothesize that cathelicidin expression correlates with obesity and modulates fat mass and hepatic steatosis.

Materials and methods:

Male C57BL/6 J mice were fed a high-fat diet. Streptozotocin was injected into mice to induce diabetes. Experimental groups were injected with cathelicidin and CD36 overexpressing lentiviruses. Human mesenteric fat adipocytes, mouse 3T3-L1 differentiated adipocytes and human HepG2 hepatocytes were used in the in vitro experiments. Cathelicidin levels in non-diabetic, prediabetic and type II diabetic patients were measured by enzyme-linked immunosorbent assay.

Results:

Lentiviral cathelicidin overexpression reduced hepatic steatosis and decreased the fat mass of high-fat diet-treated diabetic mice. Cathelicidin overexpression reduced mesenteric fat and hepatic fatty acid translocase (CD36) expression that was reversed by lentiviral CD36 overexpression. Exposure of adipocytes and hepatocytes to cathelicidin significantly inhibited CD36 expression and reduced lipid accumulation. Serum cathelicidin protein levels were significantly increased in non-diabetic and prediabetic patients with obesity, compared with non-diabetic patients with normal body mass index (BMI) values. Prediabetic patients had lower serum cathelicidin protein levels than non-diabetic subjects.

Conclusions:

Cathelicidin inhibits the CD36 fat receptor and lipid accumulation in adipocytes and hepatocytes, leading to a reduction of fat mass and hepatic steatosis in vivo. Circulating cathelicidin levels are associated with increased BMI. Our results demonstrate that cathelicidin modulates the development of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM . Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014; 311: 806–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W . Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff 2009; 28: w822–w831.

    Article  Google Scholar 

  3. Lackey DE, Olefsky JM . Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016; 12: 15–28.

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Chen R, Wang H, Liang F . Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015; 2015: 508409.

    PubMed  PubMed Central  Google Scholar 

  5. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R . Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res 2016; 167: 228–256.

    Article  CAS  PubMed  Google Scholar 

  6. Ho S, Pothoulakis C, Koon HW . Antimicrobial peptides and colitis. Curr Pharm Des 2013; 19: 40–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rivas-Santiago B, Trujillo V, Montoya A, Gonzalez-Curiel I, Castaneda-Delgado J, Cardenas A et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci 2012; 65: 19–26.

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Curiel I, Castaneda-Delgado J, Lopez-Lopez N, Araujo Z, Hernandez-Pando R, Gandara-Jasso B et al. Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum Immunol 2011; 72: 656–662.

    Article  CAS  PubMed  Google Scholar 

  9. Park HY, Kim JH, Jung M, Chung CH, Hasham R, Park CS et al. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp Dermatol 2011; 20: 969–974.

    Article  CAS  PubMed  Google Scholar 

  10. Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, Retamosa L et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 2008; 128: 223–236.

    Article  CAS  PubMed  Google Scholar 

  11. Masarone M, Federico A, Abenavoli L, Loguercio C, Persico M . Non alcoholic fatty liver. Epidemiology and natural history. Rev Recent Clin Trials 2014; 9: 126–133.

    Article  PubMed  Google Scholar 

  12. Yoon HJ, Cha BS . Pathogenesis and therapeutic approaches for non-alcoholic fatty liver disease. World J Hepatol 2014; 6: 800–811.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kobyliak N, Abenavoli L . The Role of liver biopsy to assess non-alcoholic fatty liver disease. Rev Recent Clin Trials 2014; 9: 159–169.

    Article  PubMed  Google Scholar 

  14. Zezos P, Renner EL . Liver transplantation and non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20: 15532–15538.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karagiannides I, Kokkotou E, Tansky M, Tchkonia T, Giorgadze N, O'Brien M et al. Induction of colitis causes inflammatory responses in fat depots: evidence for substance P pathways in human mesenteric preadipocytes. Proc Natl Acad Sci USA 2006; 103: 5207–5212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karagiannides I, Bakirtzi K, Kokkotou E, Stavrakis D, Margolis KG, Thomou T et al. Role of substance P in the regulation of glucose metabolism via insulin signaling-associated pathways. Endocrinology 2011; 152: 4571–4580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karagiannides I, Thomou T, Tchkonia T, Pirtskhalava T, Kypreos KE, Cartwright A et al. Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. J Biol Chem 2006; 281: 23025–23033.

    Article  CAS  PubMed  Google Scholar 

  18. Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A . Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Biochem Pharmacol 2013; 164: 77–116.

    Article  CAS  PubMed  Google Scholar 

  19. Larter CZ, Yeh MM, Van Rooyen DM, Teoh NC, Brooling J, Hou JY et al. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J Gastroenterol Hepatol 2009; 24: 1658–1668.

    Article  CAS  PubMed  Google Scholar 

  20. Turcotte LP, Raney MA, Todd MK . ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. Acta Physiol Scand 2005; 184: 131–139.

    Article  CAS  PubMed  Google Scholar 

  21. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL . Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep 2016; 16: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Febbraio M, Hajjar DP, Silverstein RL . CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108: 785–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SL, Han XX et al. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 2004; 63: 245–249.

    Article  CAS  PubMed  Google Scholar 

  24. Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P . CD36 as a lipid sensor. Physiol Behav 2011; 105: 36–42.

    Article  CAS  PubMed  Google Scholar 

  25. Christiaens V, Van Hul M, Lijnen HR, Scroyen I . CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta 2012; 1820: 949–956.

    Article  CAS  PubMed  Google Scholar 

  26. Pinheiro da Silva F, Gallo RL, Nizet V . Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol Cell Biol 2009; 87: 496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M et al. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 2005; 54: 402–411.

    Article  CAS  PubMed  Google Scholar 

  28. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, Garcia-Mediavilla MV, Fernandez-Bermejo M, Lozano-Rodriguez T et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011; 60: 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  29. Clugston RD, Yuen JJ, Hu Y, Abumrad NA, Berk PD, Goldberg IJ et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J Lipid Res 2014; 55: 239–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiao P, Feng B, Li Y, He Q, Xu H . Hepatic ERK activity plays a role in energy metabolism. Mol Cell Endocrinol 2013; 375: 157–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersen H . Motor dysfunction in diabetes. Diabetes Metab Res Rev 2012; 28: 89–92.

    Article  PubMed  Google Scholar 

  32. Schemmel KE, Padiyara RS, D'Souza JJ . Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complications 2010; 24: 354–360.

    Article  PubMed  Google Scholar 

  33. Krause MP, Riddell MC, Hawke TJ . Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 2011; 12: 345–364.

    Article  CAS  PubMed  Google Scholar 

  34. Cotter MA, Cameron NE, Robertson S, Ewing I . Polyol pathway-related skeletal muscle contractile and morphological abnormalities in diabetic rats. Exp Physiol 1993; 78: 139–155.

    Article  CAS  PubMed  Google Scholar 

  35. Cameron NE, Cotter MA, Robertson S . Changes in skeletal muscle contractile properties in streptozocin-induced diabetic rats and role of polyol pathway and hypoinsulinemia. Diabetes 1990; 39: 460–465.

    Article  CAS  PubMed  Google Scholar 

  36. Cameron NE, Cotter MA, Basso M, Hohman TC . Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 1997; 40: 271–281.

    Article  CAS  PubMed  Google Scholar 

  37. Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M . Transient early expression of TNF-alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 2008; 436: 210–213.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015; 347: 67–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CCFA (#2691), NIH K01(DK084256), and NIH R03 (DK103964) grants to HWK, CCFA (#287244, #3831 & #324000) to MC, SH and DHNTran, and United States PHS grant DK046763 to DQS. Clinical data and specimens were provided by the MIRIAD Biobank. MIRIAD is currently supported by F Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, NIH grant P01DK046763, The European Union Grant 305479, NIDDK Grant DK062413, U54 DE023798 and the Leona M and Harry B Helmsley Charitable Trust.

Author contributions

DHYT, DH-NT and HWK acquired the data and drafted the manuscript. TS, LR, ECL, CO, SH, EF, CS, JEL, AS, MV, TCH, KB, MC, BS, IL and IK acquired the data and revised the manuscript. SAM, RLG, ZL, DQS, PF, DPBMG and SRT provided provision of materials, acquired data and revised the manuscript. HWK approved the final version of manuscript and study supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H W Koon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang-Yen Tran, D., Hoang-Ngoc Tran, D., Mattai, S. et al. Cathelicidin suppresses lipid accumulation and hepatic steatosis by inhibition of the CD36 receptor. Int J Obes 40, 1424–1434 (2016). https://doi.org/10.1038/ijo.2016.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.90

This article is cited by

Search

Quick links