Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Behavior and Psychology

Food cues and ghrelin recruit the same neuronal circuitry

Abstract

Background:

Cues that are associated with the availability of food are known to trigger food anticipatory activity (FAA). This activity is expressed as increased locomotor activity and enables an animal to prepare for maximal utilization of nutritional resources. Although the exact neural network that mediates FAA is still unknown, several studies have revealed that the medial hypothalamus is involved. Interestingly, this area is responsive to the anorexigenic hormone leptin and the orexigenic hormone ghrelin that have been shown to modulate FAA. However, how FAA is regulated by neuronal activity and how leptin and ghrelin modulate this activity is still poorly understood.

Objective:

We aimed to examine how the total neuronal population and individual neurons in the medial hypothalamus respond to cue-signaled food availability in awake, behaving rats. In addition, ghrelin and leptin were injected to investigate whether these hormones could have a modulatory role in the regulation of FAA.

Design:

Using in vivo electrophysiology, neuronal activity was recorded in the medial hypothalamus in freely moving rats kept on a random feeding schedule, in which a light cue signaled upcoming food delivery. Ghrelin and leptin were administered systemically following the behavioral paradigm.

Results:

The food-predictive cue induced FAA as well as a significant increase in neural activity on a population level. More importantly, a sub-population of medial hypothalamic neurons displayed highly correlated identical responses to both ghrelin and FAA, suggesting that these neurons are part of the network that regulates FAA.

Conclusion:

This study reveals a role for ghrelin, but not leptin, signaling within medial hypothalamus in FAA on both a population level and in single cells, identifying a subset of neurons onto which cue information and ghrelin signaling converge, possibly to drive FAA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mistlberger RE . Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 1994; 18: 171–195.

    Article  CAS  Google Scholar 

  2. Schiltz CA, Bremer QZ, Landry CF, Kelley AE . Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biol 2007; 5: 16.

    Article  Google Scholar 

  3. Barbano MF, Cador M . Various aspects of feeding behavior can be partially dissociated in the rat by the incentive properties of food and the physiological state. Behav Neurosci 2005; 119: 1244–1253.

    Article  Google Scholar 

  4. Petrovich GD, Holland PC, Gallagher M . Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 2005; 25: 8295–8302.

    Article  CAS  Google Scholar 

  5. Davidson AJ . Lesion studies targeting food-anticipatory activity. Eur J Neurosci 2009; 30: 1658–1664.

    Article  Google Scholar 

  6. Gooley JJ, Schomer A, Saper CB . The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 2006; 9: 398–407.

    Article  CAS  Google Scholar 

  7. Angeles-Castellanos M, Aguilar-Roblero R, Escobar C . c-Fos expression in hypothalamic nuclei of food-entrained rats. Am J Physiol Regul Integr Comp Physiol 2004; 286: R158–R165.

    Article  CAS  Google Scholar 

  8. Ribeiro AC, Sawa E, Carren-LeSauter I, LeSauter J, Silver R, Pfaff DW . Two forces for arousal: pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proc Natl Acad Sci USA 2007; 104: 20078–20083.

    Article  CAS  Google Scholar 

  9. Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M et al. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci USA 2011; 108: 5813–5818.

    Article  CAS  Google Scholar 

  10. Tahara Y, Hirao A, Moriya T, Kudo T, Shibata S . Effects of medial hypothalamic lesions on feeding-induced entrainment of locomotor activity and liver Per2 expression in Per2::luc mice. J Biol Rhythms 2010; 25: 9–18.

    Article  Google Scholar 

  11. Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE . The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J Biol Rhythms 2007; 22: 467–478.

    Article  Google Scholar 

  12. Landry GJ, Simon MM, Webb IC, Mistlberger RE . Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1527–R1534.

    Article  CAS  Google Scholar 

  13. Moriya T, Aida R, Kudo T, Akiyama M, Doi M, Hayasaka N et al. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Eur J Neurosci 2009; 29: 1447–1460.

    Article  Google Scholar 

  14. Krieger DT . Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity. Endocrinology 1980; 106: 649–654.

    Article  CAS  Google Scholar 

  15. Inouye ST . Ventromedial hypothalamic lesions eliminate anticipatory activities of restricted daily feeding schedules in the rat. Brain Res 1982; 250: 183–187.

    Article  CAS  Google Scholar 

  16. Mistlberger RE, Rechtschaffen A . Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiol Behav 1984; 33: 227–235.

    Article  CAS  Google Scholar 

  17. Honma S, Honma K, Nagasaka T, Hiroshige T . The ventromedial hypothalamic nucleus is not essential for the prefeeding corticosterone peak in rats under restricted daily feeding. Physiol Behav 1987; 39: 211–215.

    Article  CAS  Google Scholar 

  18. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG . Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996; 98: 1101–1106.

    Article  CAS  Google Scholar 

  19. Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 1997; 48: 23–29.

    Article  CAS  Google Scholar 

  20. Verhagen LA, Egecioglu E, Luijendijk MC, Hillebrand JJ, Adan RA, Dickson SL . Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol 2011; 21: 384–392.

    Article  CAS  Google Scholar 

  21. Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 2009; 164: 351–359.

    Article  CAS  Google Scholar 

  22. LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R . Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci USA 2009; 106: 13582–13587.

    Article  CAS  Google Scholar 

  23. Davis JF, Choi DL, Clegg DJ, Benoit SC . Signaling through the ghrelin receptor modulates hippocampal function and meal anticipation in mice. Physiol Behav 2010; 103: 39–43.

    Article  Google Scholar 

  24. Ribeiro AC, Ceccarini G, Dupre C, Friedman JM, Pfaff DW, Mark AL . Contrasting effects of leptin on food anticipatory and total locomotor activity. PLoS One 2011; 6: e23364.

    Article  CAS  Google Scholar 

  25. Mistlberger RE, Marchant EG . Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat. Physiol Behav 1999; 66: 329–335.

    Article  CAS  Google Scholar 

  26. Persons JE, Stephan FK, Bays ME . Diet-induced obesity attenuates anticipation of food access in rats. Physiol Behav 1993; 54: 55–64.

    Article  CAS  Google Scholar 

  27. Thompson RH, Swanson LW . Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with Fluorogold and PHAL in the rat. Brain Res Brain Res Rev 1998; 27: 89–118.

    Article  CAS  Google Scholar 

  28. Thompson RH, Canteras NS, Swanson LW . Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 1996; 376: 143–173.

    Article  CAS  Google Scholar 

  29. Yoshida K, Li X, Cano G, Lazarus M, Saper CB . Parallel preoptic pathways for thermoregulation. J Neurosci 2009; 29: 11954–11964.

    Article  CAS  Google Scholar 

  30. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates 5th edn Elsevier: Amsterdam, The Netherlands, 2005.

    Google Scholar 

  31. Escobar C, Martinez-Merlos MT, Angeles-Castellanos M, del Carmen MM, Buijs RM . Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. Eur J Neurosci 2007; 26: 2804–2814.

    Article  Google Scholar 

  32. Kobelt P, Wisser AS, Stengel A, Goebel M, Inhoff T, Noetzel S et al. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain Res 2008; 1204: 77–86.

    Article  CAS  Google Scholar 

  33. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000; 141: 4325–4328.

    Article  CAS  Google Scholar 

  34. Ruter J, Kobelt P, Tebbe JJ, Avsar Y, Veh R, Wang L et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Res 2003; 991: 26–33.

    Article  CAS  Google Scholar 

  35. Traebert M, Riediger T, Whitebread S, Scharrer E, Schmid HA . Ghrelin acts on leptin-responsive neurones in the rat arcuate nucleus. J Neuroendocrinol 2002; 14: 580–586.

    Article  CAS  Google Scholar 

  36. Luheshi GN, Gardner JD, Rushforth DA, Loudon AS, Rothwell NJ . Leptin actions on food intake and body temperature are mediated by IL-1. Proc Natl Acad Sci USA 1999; 96: 7047–7052.

    Article  CAS  Google Scholar 

  37. Caquineau C, Douglas AJ, Leng G . Effects of cholecystokinin in the supraoptic nucleus and paraventricular nucleus are negatively modulated by leptin in 24-h fasted lean male rats. J Neuroendocrinol 2010; 22: 446–452.

    Article  CAS  Google Scholar 

  38. van Duuren E, van der Plasse G, van der Blom R, Joosten RN, Mulder AB, Pennartz CM et al. Pharmacological manipulation of neuronal ensemble activity by reverse microdialysis in freely moving rats: a comparative study of the effects of tetrodotoxin, lidocaine, and muscimol. J Pharmacol Exp Ther 2007; 323: 61–69.

    Article  CAS  Google Scholar 

  39. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB . Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998; 395: 535–547.

    Article  CAS  Google Scholar 

  40. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK . Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006; 494: 528–548.

    Article  CAS  Google Scholar 

  41. Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB et al. Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol 2000; 423: 261–281.

    Article  CAS  Google Scholar 

  42. Niimi M, Sato M, Yokote R, Tada S, Takahara J . Effects of central and peripheral injection of leptin on food intake and on brain Fos expression in the Otsuka Long-Evans Tokushima Fatty rat with hyperleptinaemia. J Neuroendocrinol 1999; 11: 605–611.

    Article  CAS  Google Scholar 

  43. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB . Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA 1998; 95: 741–746.

    Article  CAS  Google Scholar 

  44. van Dijk G, Thiele TE, Donahey JC, Campfield LA, Smith FJ, Burn P et al. Central infusions of leptin and GLP-1-(7-36) amide differentially stimulate c-FLI in the rat brain. Am J Physiol 1996; 271: R1096–R1100.

    CAS  PubMed  Google Scholar 

  45. Solomon A, De Fanti BA, Martinez JA . Peripheral ghrelin participates in the glucostatic signaling mediated by the ventromedial and lateral hypothalamus neurons. Peptides 2006; 27: 1607–1615.

    Article  CAS  Google Scholar 

  46. Lawrence CB, Snape AC, Baudoin FM, Luckman SM . Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 2002; 143: 155–162.

    Article  CAS  Google Scholar 

  47. Hillebrand JJ, Koeners MP, de Rijke CE, Kas MJ, Adan RA . Leptin treatment in activity-based anorexia. Biol Psychiatry 2005; 58: 165–171.

    Article  CAS  Google Scholar 

  48. Hillebrand JJ, Kas MJ, van Elburg AA, Hoek HW, Adan RA . Leptin’s effect on hyperactivity: potential downstream effector mechanisms. Physiol Behav 2008; 94: 689–695.

    Article  CAS  Google Scholar 

  49. Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav 2003; 79: 25–37.

    Article  CAS  Google Scholar 

  50. Sabatier N, Leng G . Spontaneous discharge characteristic of neurons in the ventromedial nucleus of the rat hypothalamus in vivo. Eur J Neurosci 2008; 28: 693–706.

    Article  Google Scholar 

  51. Chen X, Ge YL, Jiang ZY, Liu CQ, Depoortere I, Peeters TL . Effects of ghrelin on hypothalamic glucose responding neurons in rats. Brain Res 2005; 1055: 131–136.

    Article  CAS  Google Scholar 

  52. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 2006; 49: 191–203.

    Article  CAS  Google Scholar 

  53. Spanswick D, Smith MA, Groppi VE, Logan SD, Ashford ML . Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997; 390: 521–525.

    Article  CAS  Google Scholar 

  54. Yanagida H, Morita T, Kim J, Yoshida K, Nakajima K, Oomura Y et al. Effects of ghrelin on neuronal activity in the ventromedial mucleus of the hypothalamus in infantile rats: an in vitro study. Peptides 2008; 29: 912–918.

    Article  CAS  Google Scholar 

  55. Hewson AK, Viltart O, McKenzie DN, Dyball RE, Dickson SL . GHRP-6-induced changes in electrical activity of single cells in the arcuate, ventromedial and periventricular nucleus neurons of a hypothalamic slice preparation in vitro. J Neuroendocrinol 1999; 11: 919–923.

    Article  CAS  Google Scholar 

  56. Kumarnsit E, Johnstone LE, Leng G . Actions of neuropeptide Y and growth hormone secretagogues in the arcuate nucleus and ventromedial hypothalamic nucleus. Eur J Neurosci 2003; 17: 937–944.

    Article  Google Scholar 

  57. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P . Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269: 546–549.

    Article  CAS  Google Scholar 

  58. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  CAS  Google Scholar 

  59. Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001; 120: 337–345.

    Article  CAS  Google Scholar 

  60. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K . Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656–660.

    Article  CAS  Google Scholar 

  61. Tschop M, Smiley DL, Heiman ML . Ghrelin induces adiposity in rodents. Nature 2000; 407: 908–913.

    Article  CAS  Google Scholar 

  62. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DSA . preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50: 1714–1719.

    Article  CAS  Google Scholar 

  63. Drazen DL, Vahl TP, D'Alessio DA, Seeley RJ, Woods SC . Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 2006; 147: 23–30.

    Article  CAS  Google Scholar 

  64. Schüssler P, Kluge M, Yassouridis A, Dresler M, Uhr M, Steiger A . Ghrelin levels increase after pictures showing food. Obesity 20: 1212–1217.

    Article  Google Scholar 

Download references

Acknowledgements

The current work was supported by the EU (FP7-KBBE-2009-3-245009 (NeuroFAST) and FP7-KBBE-2010-4-266408 (Full4Health)) and NWO Toptalent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G van der Plasse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Plasse, G., Merkestein, M., Luijendijk, M. et al. Food cues and ghrelin recruit the same neuronal circuitry. Int J Obes 37, 1012–1019 (2013). https://doi.org/10.1038/ijo.2012.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.174

Keywords

This article is cited by

Search

Quick links