Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Determinants of brown adipocyte development and thermogenesis

Abstract

The brown adipocyte is a thermogenic cell. Its thermogenic potential is conferred by uncoupling protein-1, which ‘uncouples’ adenosine triphosphate synthesis from energy substrate oxidation. Brown fat cells in so-called classical brown adipose tissue (BAT) share their origin with myogenic factor-5-expressing myoblasts. The development of myocyte/brown adipocyte progenitor cells into a brown adipocyte lineage is apparently triggered by bone morphogenetic protein-7, which stimulates inducers of brown fat cell differentiation, such as PRD1-BF1-RIZ1 homologous domain-containing-16 and peroxisome proliferator-activated receptor-γ co-activator-1-α. The control of brown fat cell development and activity is physiologically ensured by the sympathetic nervous system (SNS), which densely innervates BAT. SNS-mediated thermogenesis is largely governed by hypothalamic and brainstem neurons. With regard to energy balance, the leptin–melanocortin pathway appears to be a major factor in controlling brown adipocyte thermogenesis. The involvement of this homeostatic pathway further supports the role of the brown adipocyte in energy balance regulation. The interest for the brown fat cell and its potential role in energy balance has been further rejuvenated recently by the demonstration that BAT can be present in substantial amounts in humans, in contrast to what has always been thought. Positron emission tomography/computed tomography scanning investigations have indeed revealed the presence in humans of important neck and shoulder cold-activable BAT depots, in particular, in young, lean and female subjects. This short review summarizes recent progress made in the biology of the brown fat cell and focuses on the determinants of the brown adipocyte development and activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gesner C . Medici Tigurini Historiae Animalium Liber I de Quadrupedibusuiuiparis.

  2. Klingenspor M . Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol 2003; 88: 141–148.

    Article  CAS  PubMed  Google Scholar 

  3. Himms-Hagen J . Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J 1990; 4: 2890–2898.

    CAS  PubMed  Google Scholar 

  4. Foster DO, Frydman ML . Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol 1979; 57: 257–270.

    CAS  PubMed  Google Scholar 

  5. Ricquier D . Respiration uncoupling and metabolism in the control of energy expenditure. Proc Nutr Soc 2005; 64: 47–52.

    CAS  PubMed  Google Scholar 

  6. Cannon B, Nedergaard J . Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277–359.

    CAS  PubMed  Google Scholar 

  7. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 3113–3120.

    CAS  PubMed  Google Scholar 

  8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    CAS  PubMed  Google Scholar 

  10. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    CAS  PubMed  Google Scholar 

  11. Cohade C, Mourtzikos KA, Wahl RL . ‘USA-Fat’: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 2003; 44: 1267–1270.

    PubMed  Google Scholar 

  12. Cohade C, Osman M, Pannu HK, Wahl RL . Uptake in supraclavicular area fat (″USA-Fat″): description on 18F-FDG PET/CT. J Nucl Med 2003; 44: 170–176.

    CAS  PubMed  Google Scholar 

  13. Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL et al. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296: 164–176.

    CAS  PubMed  Google Scholar 

  14. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6: 38–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104: 4401–4406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454: 1000–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrison SF, Nakamura K, Madden CJ . Central control of thermogenesis in mammals. Exp Physiol 2008; 93: 773–797.

    PubMed  PubMed Central  Google Scholar 

  19. Song CK, Vaughan CH, Keen-Rhinehart E, Harris RB, Richard D, Bartness TJ . Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am J Physiol Regul Integr Comp Physiol 2008; 295: R417–R428.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartness TJ, Song CK . Brain-adipose tissue neural crosstalk. Physiol Behav 2007; 91: 343–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sell H, Deshaies Y, Richard D . The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 2004; 36: 2098–2104.

    CAS  PubMed  Google Scholar 

  22. Cinti S . Reversible physiological transdifferentiation in the adipose organ. Proc Nutr Soc 2009; 68: 340–349.

    PubMed  Google Scholar 

  23. Cinti S . The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 2001; 60: 319–328.

    CAS  PubMed  Google Scholar 

  24. Cinti S . Transdifferentiation properties of adipocytes in the Adipose Organ. Am J Physiol Endocrinol Metab 2009; 297: E977–E986.

    CAS  PubMed  Google Scholar 

  25. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460: 1154–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839.

    CAS  PubMed  Google Scholar 

  27. Wu Z, Boss O . Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets 2007; 11: 1329–1338.

    CAS  PubMed  Google Scholar 

  28. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA . C/EBPbeta reprograms white 3T3-L1 preadipocytes to a Brown adipocyte pattern of gene expression. J Biol Chem 2007; 282: 24660–24669.

    CAS  PubMed  Google Scholar 

  29. Tontonoz P, Spiegelman BM . Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008; 77: 289–312.

    CAS  PubMed  Google Scholar 

  30. Lefterova MI, Lazar MA . New developments in adipogenesis. Trends Endocrinol Metab 2009; 20: 107–114.

    CAS  PubMed  Google Scholar 

  31. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ . BAT: a new target for human obesity? Trends Pharmacol Sci 2009; 30: 387–396.

    PubMed  Google Scholar 

  32. Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M . Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab 2009; 10: 324–335.

    CAS  PubMed  Google Scholar 

  33. Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B . Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol 2009; 218: 444–449.

    CAS  PubMed  Google Scholar 

  34. Cannon B, Nedergaard J . Developmental biology: neither fat nor flesh. Nature 2008; 454: 947–948.

    CAS  PubMed  Google Scholar 

  35. Kozak LP, Anunciado-Koza R . UCP1: its involvement and utility in obesity. Int J Obes (Lond) 2008; 32 (Suppl 7): S32–S38.

    CAS  Google Scholar 

  36. Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B . PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 2005; 1740: 293–304.

    CAS  PubMed  Google Scholar 

  37. Granneman JG, Li P, Zhu Z, Lu Y . Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab 2005; 289: E608–E616.

    CAS  PubMed  Google Scholar 

  38. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    CAS  PubMed  Google Scholar 

  39. Ghorbani M, Himms-Hagen J . Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord 1997; 21: 465–475.

    CAS  PubMed  Google Scholar 

  40. Kajimura S, Seale P, Spiegelman BM . Transcriptional control of brown fat development. Cell Metab 2010; 11: 257–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J . Chronic peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, ucp1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010; 285: 7153–7164.

    CAS  PubMed  Google Scholar 

  42. Murano I, Barbatelli G, Giordano A, Cinti S . Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 2009; 214: 171–178.

    CAS  PubMed  Google Scholar 

  43. Nedergaard J, Golozoubova V, Matthias A, Shabalina I, Ohba K, Ohlson K et al. Life without UCP1: mitochondrial, cellular and organismal characteristics of the UCP1-ablated mice. Biochem Soc Trans 2001; 29: 756–763.

    CAS  PubMed  Google Scholar 

  44. Bouillaud F . UCP2, not a physiologically relevant uncoupler but a glucose sparing switch impacting ROS production and glucose sensing. Biochim Biophys Acta 2009; 1787: 377–383.

    CAS  PubMed  Google Scholar 

  45. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387: 90–94.

    CAS  PubMed  Google Scholar 

  46. Nedergaard J, Cannon B . The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 2003; 88: 65–84.

    CAS  PubMed  Google Scholar 

  47. Nicholls DG, Locke RM . Thermogenic mechanisms in brown fat. Physiol Rev 1984; 64: 1–64.

    CAS  PubMed  Google Scholar 

  48. Gonzalez-Barosso MMR E . The role of fatty acids in the activity of the uncoupling protein. Curr Chem Biol 2009; 3: 180–188.

    Google Scholar 

  49. Mozo J, Emre Y, Bouillaud F, Ricquier D, Criscuolo F . Thermoregulation: what role for UCPs in mammals and birds? Biosci Rep 2005; 25: 227–249.

    CAS  PubMed  Google Scholar 

  50. Collins S, Cao W, Robidoux J . Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 2004; 18: 2123–2131.

    CAS  PubMed  Google Scholar 

  51. Rim JS, Kozak LP . Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J Biol Chem 2002; 277: 34589–34600.

    CAS  PubMed  Google Scholar 

  52. Watanabe M, Yamamoto T, Mori C, Okada N, Yamazaki N, Kajimoto K et al. Cold-induced changes in gene expression in brown adipose tissue: implications for the activation of thermogenesis. Biol Pharm Bull 2008; 31: 775–784.

    CAS  PubMed  Google Scholar 

  53. Debevec D, Christian M, Morganstein D, Seth A, Herzog B, Parker M et al. Receptor interacting protein 140 regulates expression of uncoupling protein 1 in adipocytes through specific peroxisome proliferator activated receptor isoforms and estrogen-related receptor alpha. Mol Endocrinol 2007; 21: 1581–1592.

    CAS  PubMed  Google Scholar 

  54. Bargmann W, von Hehn G, Lindner E . On the cells of the brown fatty tissue and their innervation]. Z Zellforsch Mikrosk Anat 1968; 85: 601–613.

    CAS  PubMed  Google Scholar 

  55. Bartness TJ, Song CK . Innervation of brown adipose tissue and its role in thermogenesis. Can J Diabetes 2005; 29: 420–428.

    CAS  Google Scholar 

  56. Landsberg L, Saville ME, Young JB . Sympathoadrenal system and regulation of thermogenesis. Am J Physiol 1984; 247: E181–E189.

    CAS  PubMed  Google Scholar 

  57. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK et al. BetaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843–845.

    CAS  PubMed  Google Scholar 

  58. Lowell BB, Bachman ES . Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 2003; 278: 29385–29388.

    CAS  PubMed  Google Scholar 

  59. Jimenez M, Leger B, Canola K, Lehr L, Arboit P, Seydoux J et al. Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 2002; 530: 37–40.

    CAS  PubMed  Google Scholar 

  60. Richard D . Energy expenditure: a critical determinant of energy balance with key hypothalamic controls. Minerva Endocrinol 2007; 32: 173–183.

    CAS  PubMed  Google Scholar 

  61. Berthoud HR, Morrison C . The brain, appetite, and obesity. Annu Rev Psychol 2008; 59: 55–92.

    PubMed  Google Scholar 

  62. Grill HJ . Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring) 2006; 14 (Suppl 5): 216S–221S.

    Google Scholar 

  63. Cone RD . Studies on the physiological functions of the melanocortin system. Endocr Rev 2006; 27: 736–749.

    CAS  PubMed  Google Scholar 

  64. Ellacott KL, Cone RD . The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1265–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Adan RA, Tiesjema B, Hillebrand JJ, la Fleur SE, Kas MJ, de Krom M . The MC4 receptor and control of appetite. Br J Pharmacol 2006; 149: 815–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Butler AA . The melanocortin system and energy balance. Peptides 2006; 27: 281–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000; 97: 12339–12344.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Glavas MM, Joachim SE, Draper SJ, Smith MS, Grove KL . Melanocortinergic activation by melanotan II inhibits feeding and increases uncoupling protein 1 messenger ribonucleic acid in the developing rat. Endocrinology 2007; 148: 3279–3287.

    CAS  PubMed  Google Scholar 

  69. Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ . Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 2007; 148: 5339–5347.

    CAS  PubMed  Google Scholar 

  70. Song CK, Jackson RM, Harris RB, Richard D, Bartness TJ . Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1467–R1476.

    CAS  PubMed  Google Scholar 

  71. Voss-Andreae A, Murphy JG, Ellacott KL, Stuart RC, Nillni EA, Cone RD et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology 2007; 148: 1550–1560.

    CAS  PubMed  Google Scholar 

  72. Harrold JA, Williams G . Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathway. Peptides 2006; 27: 365–371.

    CAS  PubMed  Google Scholar 

  73. Oswal A, Yeo GS . The leptin melanocortin pathway and the control of body weight: lessons from human and murine genetics. Obes Rev 2007; 8: 293–306.

    CAS  PubMed  Google Scholar 

  74. Ilnytska O, Argyropoulos G . The role of the Agouti-Related Protein in energy balance regulation. Cell Mol Life Sci 2008; 65: 2721–2731.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y, Kilroy GE, Henagan TM, Prpic-Uhing V, Richards WG, Bannon AW et al. Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J 2005; 19: 1482–1491.

    CAS  PubMed  Google Scholar 

  76. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB . Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2005; 493: 63–71.

    CAS  PubMed  Google Scholar 

  77. Oldfield BJ, Giles ME, Watson A, Anderson C, Colvill LM, McKinley MJ . The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 2002; 110: 515–526.

    CAS  PubMed  Google Scholar 

  78. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998; 21: 1375–1385.

    CAS  PubMed  Google Scholar 

  79. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK . Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213–235.

    CAS  PubMed  Google Scholar 

  80. Madden CJ, Morrison SF . Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2010; 298: R776–R783.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nogueira MI, de Rezende BD, do Vale LE, Bittencourt JC . Afferent connections of the caudal raphe pallidus nucleus in rats: a study using the fluorescent retrograde tracers fluorogold and true-blue. Ann Anat 2000; 182: 35–45.

    CAS  PubMed  Google Scholar 

  82. Fan W, Morrison SF, Cao WH, Yu P . Thermogenesis activated by central melanocortin signaling is dependent on neurons in the rostral raphe pallidus (rRPa) area. Brain Res 2007; 1179: 61–69.

    CAS  PubMed  Google Scholar 

  83. Haynes WG, Morgan DA, Djalali A, Sivitz WI, Mark AL . Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 1999; 33: 542–547.

    CAS  PubMed  Google Scholar 

  84. Harthoorn LF . Projection-dependent differentiation of melanin-concentrating hormone-containing neurons. Cell Mol Neurobiol 2007; 27: 49–55.

    CAS  PubMed  Google Scholar 

  85. Llewellyn-Smith IJ, Martin CL, Marcus JN, Yanagisawa M, Minson JB, Scammell TE . Orexin-immunoreactive inputs to rat sympathetic preganglionic neurons. Neurosci Lett 2003; 351: 115–119.

    CAS  PubMed  Google Scholar 

  86. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    CAS  PubMed  Google Scholar 

  87. Enerback S . Human brown adipose tissue. Cell Metab 2010; 11: 248–252.

    PubMed  Google Scholar 

  88. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia CA, Van Nostrand D, Atkins F, Acio E, Butler C, Esposito G et al. Reduction of brown fat 2-deoxy-2-[F-18]fluoro-D-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 2006; 8: 24–29.

    PubMed  Google Scholar 

  90. Kim S, Krynyckyi BR, Machac J, Kim CK . Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 2008; 35: 984–989.

    PubMed  Google Scholar 

  91. Nedergaard J, Cannon B . The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 2010; 11: 268–272.

    CAS  PubMed  Google Scholar 

  92. Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass and glucose-uptake activity of 18F-FDG-detected BAT. J Clin Endocrinol Metab 2011; e-pub ahead of print 13 October 2010; doi:10.1210/jc.2010-0989.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Richard.

Ethics declarations

Competing interests

ACC has received lecture fees from Pfizer, grant support from GlaxoSmithKline, Pfizer, Philips, Merck and Co. and Amsterdam Molecular Therapeutics, and holds two patents related to this subject area. The remaining authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, D., Carpentier, A., Doré, G. et al. Determinants of brown adipocyte development and thermogenesis. Int J Obes 34 (Suppl 2), S59–S66 (2010). https://doi.org/10.1038/ijo.2010.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.241

Keywords

This article is cited by

Search

Quick links