Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermogenic ingredients and body weight regulation

Abstract

The global prevalence of obesity has increased considerably in the last decade. Tools for obesity management, including consumption of caffeine, capsaicin and different teas such as green, white and oolong tea, have been proposed as strategies for weight loss and weight maintenance, as they may increase energy expenditure (4–5%), fat oxidation (10–16%) and have been proposed to counteract the decrease in metabolic rate that is present during weight loss. Daily increases in thermogenesis of approximately 300–400 kJ can eventually lead to substantial weight loss. However, it becomes clearer that certain conditions have to be met before thermogenic ingredients yield an effect, as intra-variability with respect to body weight regulation has been shown between subjects. Furthermore, the sympathetic nervous system is involved in the regulation of lipolysis, and the sympathetic innervation of white adipose tissue may have an important role in the regulation of total body fat in general. Taken together, these functional ingredients have the potential to produce significant effects on metabolic targets such as satiety, thermogenesis and fat oxidation. A significant clinical outcome may sometimes appear straightforward and may also depend very strongly on full compliance of subjects. Nevertheless, thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i–xii, 1–253.

    Google Scholar 

  2. Stunkard AJ . Current views on obesity. Am J Med 1996; 100: 230–236.

    CAS  PubMed  Google Scholar 

  3. Wadden TA, Stunkard AJ, Liebschutz J . Three-year follow-up of the treatment of obesity by very low calorie diet, behavior therapy, and their combination. J Consult Clin Psychol 1988; 56: 925–928.

    CAS  PubMed  Google Scholar 

  4. Pasman WJ, Saris WH, Muls E, Vansant G, Westerterp-Plantenga MS . Effect of exercise training on long-term weight maintenance in weight-reduced men. Metabolism 1999; 48: 15–21.

    CAS  PubMed  Google Scholar 

  5. Graham HN . Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21: 334–350.

    CAS  PubMed  Google Scholar 

  6. Weisburger JH . Tea and health: a historical perspective. Cancer Lett 1997; 114: 315–317.

    CAS  PubMed  Google Scholar 

  7. Kao YH, Hiipakka RA, Liao S . Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141: 980–987.

    CAS  PubMed  Google Scholar 

  8. Dulloo AG, Seydoux J, Girardier L . Potentiation of the thermogenic antiobesity effects of ephedrine by dietary methylxanthines: adenosine antagonism or phosphodiesterase inhibition? Metabolism 1992; 41: 1233–1241.

    CAS  PubMed  Google Scholar 

  9. Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS . Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr 1989; 49: 44–50.

    CAS  PubMed  Google Scholar 

  10. Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J . Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 1990; 51: 759–767.

    CAS  PubMed  Google Scholar 

  11. Bracco D, Ferrarra JM, Arnaud MJ, Jequier E, Schutz Y . Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 1995; 269: E671–E678.

    CAS  PubMed  Google Scholar 

  12. Chantre P, Lairon D . Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002; 9: 3–8.

    CAS  PubMed  Google Scholar 

  13. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999; 70: 1040–1045.

    CAS  PubMed  Google Scholar 

  14. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J . Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 2000; 24: 252–258.

    CAS  PubMed  Google Scholar 

  15. Yoshioka M, Lim K, Kikuzato S, Kiyonaga A, Tanaka H, Shindo M et al. Effects of red-pepper diet on the energy metabolism in men. J Nutr Sci Vitaminol 1995; 41: 647–656.

    CAS  PubMed  Google Scholar 

  16. Rudelle S, Ferruzzi MG, Cristiani I, Moulin J, Mace K, Acheson KJ et al. Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring, Md) 2007; 15: 349–355.

    CAS  Google Scholar 

  17. Berube-Parent S, Pelletier C, Dore J, Tremblay A . Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 2005; 94: 432–436.

    CAS  PubMed  Google Scholar 

  18. Komatsu T, Nakamori M, Komatsu K, Hosoda K, Okamura M, Toyama K et al. Oolong tea increases energy metabolism in Japanese females. J Med Invest 2003; 50: 170–175.

    PubMed  Google Scholar 

  19. Gregersen NT, Bitz C, Krog-Mikkelsen I, Hels O, Kovacs EM, Rycroft JA et al. Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. Br J Nutr 2009; 102: 1187–1194.

    CAS  PubMed  Google Scholar 

  20. Boschmann M, Thielecke F . The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr 2007; 26: 389S–395S.

    CAS  PubMed  Google Scholar 

  21. Hase T, Komine Y, Meguro S, Takeda Y, Takahashi H, Matsui Y et al. Anti-obesity effects of tea catechins in humans. J Oleo Sci 2001; 50: 599–605.

    CAS  Google Scholar 

  22. Nagao T, Meguro S, Soga S, Otsuka A, Tomonobu K, Fumoto S et al. Tea catechins suppress accumulation of body fat in humans. J Oleo Sci 2001; 50: 717–728.

    CAS  Google Scholar 

  23. Tsuchida T, Itakura H, Nakamura H . Reduction of body fat in humans by long-term ingestion of catechins. Prog Med 2002; 22: 2189–2203.

    Google Scholar 

  24. Westerterp-Plantenga MS, Lejeune MP, Kovacs EM . Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 2005; 13: 1195–1204.

    CAS  PubMed  Google Scholar 

  25. Kovacs EM, Lejeune MP, Nijs I, Westerterp-Plantenga MS . Effects of green tea on weight maintenance after body-weight loss. Br J Nutr 2004; 91: 431–437.

    CAS  PubMed  Google Scholar 

  26. Diepvens K, Kovacs EM, Nijs IM, Vogels N, Westerterp-Plantenga MS . Effect of green tea on resting energy expenditure and substrate oxidation during weight loss in overweight females. Br J Nutr 2005; 94: 1026–1034.

    CAS  PubMed  Google Scholar 

  27. Kozuma K, Chikama A, Hishino E, Kataoka K, Mori K, Hase T et al. Effect of intake of a beverage containing 540 mg catechins on the body composition of obese women and men. Prog Med 2005; 25: 185–197.

    Google Scholar 

  28. Harada U, Chikama A, Saito S, Takase H, Nagao T, Hase T et al. Effects of long-term ingestion of tea catechins on energy expenditure and dietary fat oxidation in healthy subjects. J Health Sci 2005; 51: 248–252.

    CAS  Google Scholar 

  29. Kajimoto O, Kajimoto Y, Yabune M, Nakamura H, Kotani K, Suzuki Y, et al. Tea catechins with a galloyl moiety reduce body weight and fat. Journal of Health Science 2005; 51: 161–171.

    CAS  Google Scholar 

  30. Chan CC, Koo MW, Ng EH, Tang OS, Yeung WS, Ho PC . Effects of Chinese green tea on weight, and hormonal and biochemical profiles in obese patients with polycystic ovary syndrome–a randomized placebo-controlled trial. Journal of the Society for Gynecologic Investigation 2006; 13: 63–68.

    CAS  PubMed  Google Scholar 

  31. Nagao T, Hase T, Tokimitsu I . A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring, Md) 2007; 15: 1473–1483.

    CAS  Google Scholar 

  32. Matsuyama T, Tanaka Y, Kamimaki I, Nagao T, Tokimitsu I . Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children. Obesity 2008; 16: 1338–1348.

    PubMed  Google Scholar 

  33. Auvichayapat P, Prapochanung M, Tunkamnerdthai O, Sripanidkulchai BO, Auvichayapat N, Thinkhamrop B et al. Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 2008; 93: 486–491.

    CAS  PubMed  Google Scholar 

  34. Hsu CH, Tsai TH, Kao YH, Hwang KC, Tseng TY, Chou P . Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr (Edinburgh, Scotland) 2008; 27: 363–370.

    CAS  Google Scholar 

  35. Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA et al. Effects of catechin enriched green tea on body composition. Obesity (Silver Spring, Md) 2009 e-pub ahead of print.

  36. Hursel R, Viechtbauer W, Westerterp-Plantenga MS . The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obe (2005) 2009; 33: 956–961.

    CAS  Google Scholar 

  37. Chen WY, Yang ZB, Hosoda K, Chen L, Lin BH, Kimura J et al. Clinical efficacy of oolong tea on anti-simple obesity. Jpn J Clin Nutr 1998; 20: 83–90.

    Google Scholar 

  38. Otsuka K, Uchida H, Yuzawa M, Fumoto S, Tomonobu K, Chikama A et al. Effects of tea catechins on body fat metabolism in women. Jpn J Nutr Assess 2002; 19: 365–376.

    CAS  Google Scholar 

  39. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y et al. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 2005; 81: 122–129.

    CAS  PubMed  Google Scholar 

  40. He RR, Chen L, Lin BH, Matsui Y, Yao XS, Kurihara H . Beneficial effects of oolong tea consumption on diet-induced overweight and obese subjects. Chin J Integr Med 2009; 15: 34–41.

    CAS  PubMed  Google Scholar 

  41. Rumpler W, Seale J, Clevidence B, Judd J, Wiley E, Yamamoto S et al. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr 2001; 131: 2848–2852.

    CAS  PubMed  Google Scholar 

  42. Hilal Y, Engelhardt U . Characterisation of white tea-comparison to green and black tea. JVerbrLebensm 2007; 2: 414–421.

    CAS  Google Scholar 

  43. Sohle J, Knott A, Holtzmann U, Siegner R, Gronniger E, Schepky A et al. White tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes. Nutr Metabol 2009; 6: 20.

    Google Scholar 

  44. Alcazar A, Ballesteros O, Jurado JM, Pablos F, Martin MJ, Vilches JL et al. Differentiation of green, white, black, oolong, and Pu-erh teas according to their free amino acids content. J Agric Food Chem 2007; 55: 5960–5965.

    CAS  PubMed  Google Scholar 

  45. Santana-Rios G, Orner GA, Amantana A, Provost C, Wu SY, Dashwood RH . Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mut Res 2001; 495: 61–74.

    CAS  Google Scholar 

  46. Hursel R, Westerterp-Plantenga MS . Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am J Clin Nutr 2009; 89: 822–830.

    CAS  PubMed  Google Scholar 

  47. Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y . Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 2006; 9: 451–458.

    CAS  PubMed  Google Scholar 

  48. Borchardt RT, Huber JA . Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem 1975; 18: 120–122.

    CAS  PubMed  Google Scholar 

  49. Hodgson JM, Puddey IB, Burke V, Croft KD . Is reversal of endothelial dysfunction by tea related to flavonoid metabolism? Br J Nutr 2006; 95: 14–17.

    CAS  PubMed  Google Scholar 

  50. Palmatier MA, Kang AM, Kidd KK . Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557–567.

    CAS  PubMed  Google Scholar 

  51. Cornelis MC, El-Sohemy A, Campos H . Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr 2007; 86: 240–244.

    CAS  PubMed  Google Scholar 

  52. Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB et al. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 2004; 79: 40–46.

    CAS  PubMed  Google Scholar 

  53. Belza A, Frandsen E, Kondrup J . Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: a placebo-controlled, double-blind 8-week intervention in obese subjects. Int J Obes (2005) 2007; 31: 121–130.

    CAS  Google Scholar 

  54. Kao YH, Hiipakka RA, Liao S . Modulation of obesity by a green tea catechin. Am J Clin Nutr 2000; 72: 1232–1234.

    CAS  PubMed  Google Scholar 

  55. Klaus S, Pultz S, Thone-Reineke C, Wolfram S . Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (2005) 2005; 29: 615–623.

    CAS  Google Scholar 

  56. Lowell BB, Spiegelman BM . Towards a molecular understanding of adaptive thermogenesis. Nature 2000; 404: 652–660.

    CAS  PubMed  Google Scholar 

  57. Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW . The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 2001; 60: 528–533.

    CAS  PubMed  Google Scholar 

  58. Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I . Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002; 26: 1459–1464.

    CAS  PubMed  Google Scholar 

  59. Brown PJ, Wright WB . An investigation of the interactions between milk proteins and tea polyphenols. J Chromatogr 1963; 11: 504–514.

    CAS  PubMed  Google Scholar 

  60. Jobstl E, Howse JR, Fairclough JP, Williamson MP . Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J Agric Food Chem 2006; 54: 4077–4081.

    PubMed  Google Scholar 

  61. Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D . Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 1997; 65: 1489–1494.

    CAS  PubMed  Google Scholar 

  62. Lorenz M, Jochmann N, von Krosigk A, Martus P, Baumann G, Stangl K et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J 2007; 28: 219–223.

    PubMed  Google Scholar 

  63. Serafini M, Ghiselli A, Ferro-Luzzi A . In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 1996; 50: 28–32.

    CAS  PubMed  Google Scholar 

  64. Arciero PJ, Gardner AW, Calles-Escandon J, Benowitz NL, Poehlman ET . Effects of caffeine ingestion on NE kinetics, fat oxidation, and energy expenditure in younger and older men. Am J Physiol 1995; 268: E1192–E1198.

    CAS  PubMed  Google Scholar 

  65. Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequier E . Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 1980; 33: 989–997.

    CAS  PubMed  Google Scholar 

  66. Tremblay A, Masson E, Leduc S, Houde A, Despres JP . Caffeine reduces spontaneous energy intake in men but not in women. Nutr Res 1988; 8: 553–558.

    CAS  Google Scholar 

  67. Hollands MA, Arch JR, Cawthorne MA . A simple apparatus for comparative measurements of energy expenditure in human subjects: the thermic effect of caffeine. Am J Clin Nutr 1981; 34: 2291–2294.

    CAS  PubMed  Google Scholar 

  68. Pasman WJ, Westerterp-Plantenga MS, Saris WH . The effectiveness of long-term supplementation of carbohydrate, chromium, fibre and caffeine on weight maintenance. Int J Obes Relat Metab Disord 1997; 21: 1143–1151.

    CAS  PubMed  Google Scholar 

  69. Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB . Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 2006; 83: 674–680.

    CAS  PubMed  Google Scholar 

  70. Curatolo PW, Robertson D . The health consequences of caffeine. Ann Intern Med 1983; 98: 641–653.

    CAS  PubMed  Google Scholar 

  71. Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 1978; 298: 181–186.

    CAS  PubMed  Google Scholar 

  72. Robertson D, Wade D, Workman R, Woosley RL, Oates JA . Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest 1981; 67: 1111–1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshioka M, St-Pierre S, Suzuki M, Tremblay A . Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr 1998; 80: 503–510.

    CAS  PubMed  Google Scholar 

  74. Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M et al. Effects of red pepper on appetite and energy intake. Br J Nutr 1999; 82: 115–123.

    CAS  PubMed  Google Scholar 

  75. Yoshioka M, Doucet E, Drapeau V, Dionne I, Tremblay A . Combined effects of red pepper and caffeine consumption on 24 h energy balance in subjects given free access to foods. Br J Nutr 2001; 85: 203–211.

    CAS  PubMed  Google Scholar 

  76. Ohnuki K, Niwa S, Maeda S, Inoue N, Yazawa S, Fushiki T . CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Biosci Biotechnol Biochem 2001; 65: 2033–2036.

    CAS  PubMed  Google Scholar 

  77. Westerterp-Plantenga MS, Smeets A, Lejeune MP . Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes (2005) 2005; 29: 682–688.

    CAS  Google Scholar 

  78. Smeets AJ, Westerterp-Plantenga MS . The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Eur J Nutr 2009; 48: 229–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Galgani JE, Ryan DH, Ravussin E . Effect of capsinoids on energy metabolism in human subjects. Br J Nutr 2009; 103: 38–42.

    PubMed  PubMed Central  Google Scholar 

  80. Lejeune MP, Kovacs EM, Westerterp-Plantenga MS . Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br J Nutr 2003; 90: 651–659.

    CAS  PubMed  Google Scholar 

  81. Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 2009; 89: 45–50.

    CAS  PubMed  Google Scholar 

  82. Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S et al. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol 2003; 95: 2408–2415.

    CAS  PubMed  Google Scholar 

  83. Faraut B, Giannesini B, Matarazzo V, Marqueste T, Dalmasso C, Rougon G et al. Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration. Am J Physiol Endocrinol Metab 2007; 292: E1474–E1482.

    CAS  PubMed  Google Scholar 

  84. Reinbach HC, Smeets A, Martinussen T, Moller P, Westerterp-Plantenga MS . Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin Nutr (Edinburgh, Scotland) 2009; 28: 260–265.

    CAS  Google Scholar 

  85. Belza A, Toubro S, Astrup A . The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. Eur J Clin Nutr 2007; 63: 57–64.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Westerterp-Plantenga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hursel, R., Westerterp-Plantenga, M. Thermogenic ingredients and body weight regulation. Int J Obes 34, 659–669 (2010). https://doi.org/10.1038/ijo.2009.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.299

Keywords

  • body weight
  • thermogenic
  • fat oxidation
  • energy expenditure
  • energy intake

Further reading

Search

Quick links