Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infection-induced inflammatory response of adipocytes in vitro

Abstract

Background:

Abdominal obesity plays an important role in the development of insulin resistance, diabetes mellitus and atherosclerosis. The exact pathophysiological mechanisms are unclear but adipocyte dysfunction is thought to be crucial. Infections are associated with the development of atherosclerosis as well as diabetes. In this study we investigated whether adipocytes can be infected and whether this results in production of inflammatory cytokines relevant for the development of atherosclerosis and diabetes.

Methods:

Pre-adipocytes were cultured and differentiated into mature adipocytes in vitro. Adipocytes and pre-adipocytes were incubated with infective and heat-inactivated Chlamydia pneumoniae, cytomegalovirus (CMV), adenovirus (Ad) subtypes 2 and 36, influenza A and respiratory syncitial virus (RSV). After 48 h, adiponectin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and plasminogen activator inhibitor-1 (PAI-1) were measured in supernatants.

Results:

Infection of adipocytes with Ad-36, CMV and RSV resulted in increased IL-6 production from 192±22 pg ml−1 (uninfected) to 1030±86 pg ml−1, 838±59 pg ml−1 and 1241±191 pg ml−1, respectively (all P<0.01 vs control). In addition, Ad-36 infection slightly reduced PAI production in adipocytes (285±26.8 ng ml−1 vs uninfected: 477±71.2 ng ml−1; P=0.05) and pre-adipocytes (709±43.3 ng ml−1 vs uninfected: 1071±71.8 ng ml−1; P<0.01). In contrast, human Ad type 2 did not exert any effect on IL-6 or PAI production. None of the microorganisms induced significant changes in adiponectin and/or TNF-α production.

Conclusions:

Adipocytes can be infected with several microorganisms in vitro. Infection of adipocytes with Ad-36, but not Ad-2 leads to increased production of IL-6 which might contribute to chronic low-grade inflammation, a process known to be involved in the development of cardiovascular diseases and type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P et al. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. Lancet 2005; 366: 1640–1649.

    Article  Google Scholar 

  2. Lindsay RS, Howard BV . Cardiovascular risk associated with the metabolic syndrome. Curr Diab Rep 2004; 1: 63–68.

    Article  Google Scholar 

  3. Koh KK, Han SH, Quon MJ . Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 2005; 46: 1978–1985.

    Article  CAS  Google Scholar 

  4. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799–1805.

    Article  CAS  Google Scholar 

  5. Festa A, D’Agostino Jr R, Tracy RP, Haffner SM . Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002; 51: 1131–1137.

    Article  CAS  Google Scholar 

  6. Jialal I, Devaraj S, Venugopal SK . C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 2004; 44: 6–11.

    Article  CAS  Google Scholar 

  7. Festa A, D’Agostino Jr R, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001; 25: 1407–1415.

    Article  CAS  Google Scholar 

  8. Gasteyger C, Tremblay A . Metabolic impact of body fat distribution. J Endocrinol Invest 2002; 25: 876–883.

    Article  CAS  Google Scholar 

  9. Bouwman JJ, Visseren FL, Bevers LM, van der Vlist WE, Bouter KP, Diepersloot RJ . Azithromycin reduces Chlamydia pneumoniae-induced attenuation of eNOS and cGMP production by endothelial cells. Eur J Clin Invest 2005; 35: 573–582.

    Article  CAS  Google Scholar 

  10. Bouwman JJ, Visseren FL, Bosch MC, Bouter KP, Diepersloot RJ . Procoagulant and inflammatory response of virus-infected monocytes. Eur J Clin Invest 2002; 32: 759–766.

    Article  CAS  Google Scholar 

  11. Campbell LA, Kuo CC . Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2004; 2: 23–32.

    Article  CAS  Google Scholar 

  12. Grayston JT, Kuo CC, Campbell LA, Benditt EP . Chlamydia pneumoniae, strain TWAR and atherosclerosis. Eur Heart J 1993; 14 (Suppl K): 66–71.

    PubMed  Google Scholar 

  13. Visseren FL, Bouwman JJ, Bouter KP, Diepersloot RJ, de Groot PH, Erkelens DW . Procoagulant activity of endothelial cells after infection with respiratory viruses. Thromb Haemost 2000; 84: 319–324.

    Article  CAS  Google Scholar 

  14. Zhu J, Quyyumi AA, Norman JE, Csako G, Epstein SE . Cytomegalovirus in the pathogenesis of atherosclerosis: the role of inflammation as reflected by elevated C-reactive protein levels. J Am Coll Cardiol 1999; 34: 1738–1743.

    Article  CAS  Google Scholar 

  15. Dhurandhar NV . Contribution of pathogens in human obesity. Drug News Perspect 2004; 17: 307–313.

    Article  Google Scholar 

  16. Whigham LD, Israel BA, Atkinson RL . Adipogenic potential of multiple human adenoviruses in vivo and in vitro in animals. Am J Physiol Regul Integr Comp Physiol 2006; 290: R190–R194 e-pub.

    Article  CAS  Google Scholar 

  17. Desruisseaux MS, Trujillo ME, Trujillo ME, Tanowitz HB, Scherer PE . Adipocyte, adipose tissue, and infectious disease. Infect Immun 2007; 75: 1066–1078.

    Article  CAS  Google Scholar 

  18. Dhurandhar NV . Infectobesity: obesity of infectious origin. J Nutr 2001; 131: 2794S–2797S.

    Article  CAS  Google Scholar 

  19. Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA, Bradley SM et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr 2002; 132: 3155–3160.

    Article  CAS  Google Scholar 

  20. Dhurandhar NV, Israel BA, Kolesar JM, Mayhew G, Cook ME, Atkinson RL . Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Disord 2001; 25: 990–996.

    Article  CAS  Google Scholar 

  21. Dhurandhar NV, Israel BA, Kolesar JM, Mayhew GF, Cook ME, Atkinson RL . Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Disord 2000; 24: 989–996.

    Article  CAS  Google Scholar 

  22. Atkinson RL, Dhurandhar NV, Allison DB, Bowen RL, Israel BA, Albu JB et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes (Lond) 2005; 29: 281–286.

    Article  CAS  Google Scholar 

  23. Reed LJ, Muench J . A simple method for estimating fifty percent endpoints. Am J Hyg 27; 493: 1938. ref type: Generic.

    Google Scholar 

  24. Bouwman JJ, Visseren FL, Bouter PK, Diepersloot RJ . Azithromycin inhibits interleukin-6 but not fibrinogen production in hepatocytes infected with cytomegalovirus and chlamydia pneumoniae. J Lab Clin Med 2004; 144: 18–26.

    Article  CAS  Google Scholar 

  25. Ross R . Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138 (5 Part 2): S419–S420.

    Article  CAS  Google Scholar 

  26. Altman R . Risk factors in coronary atherosclerosis athero-inflammation: the meeting point. Thromb J 2003; 1: 4.

    Article  Google Scholar 

  27. Wu JT, Wu LL . Linking inflammation and atherogenesis: soluble markers identified for the detection of risk factors and for early risk assessment. Clin Chim Acta 2006; 366: 74–80.

    Article  CAS  Google Scholar 

  28. Erdmann E . Diabetes and cardiovascular risk markers. Curr Med Res Opin 2005; 21 (Suppl 1): S21–S28.

    Article  CAS  Google Scholar 

  29. Basta G, Schmidt AM, De CR . Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 2004; 63: 582–592.

    Article  CAS  Google Scholar 

  30. de Larranaga GF, Bocassi AR, Puga LM, Alonso BS, Benetucci JA . Endothelial markers and HIV infection in the era of highly active antiretroviral treatment. Thromb Res 2003; 110: 93–98.

    Article  CAS  Google Scholar 

  31. Leinonen M, Saikku P . Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis 2002; 2: 11–17.

    Article  Google Scholar 

  32. Muhlestein JB . Infectious agents, antibiotics, and coronary artery disease. Curr Interv Cardiol Rep 2000; 2: 342–348.

    CAS  PubMed  Google Scholar 

  33. Cannon CP, Braunwald E, Mccabe CH, Grayston JT, Muhlestein B, Giugliano RP et al. Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N Engl J Med 2005; 352: 1646–1654.

    Article  CAS  Google Scholar 

  34. Gieffers J, Fullgraf H, Jahn J, Klinger M, Dalhoff K, Katus HA et al. Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 2001; 103: 351–356.

    Article  CAS  Google Scholar 

  35. Chiu B, Viira E, Tucker W, Fong IW . Chlamydia pneumoniae, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery. Circulation 1997; 96: 2144–2148.

    Article  CAS  Google Scholar 

  36. Watt S, Aesch B, Lanotte P, Tranquart F, Quentin R . Viral and bacterial DNA in carotid atherosclerotic lesions. Eur J Clin Microbiol Infect Dis 2003; 22: 99–105.

    CAS  PubMed  Google Scholar 

  37. Dhurandhar NV, Kulkarni PR, Ajinkya SM, Sherikar AA, Atkinson RL . Association of adenovirus infection with human obesity. Obes Res 1997; 5: 464–469.

    Article  CAS  Google Scholar 

  38. So PW, Herlihy AH, Bell JD . Adiposity induced by adenovirus 5 inoculation. Int J Obes (Lond) 2005; 29: 603–606.

    Article  CAS  Google Scholar 

  39. Bastard JP, Jardel C, Delattre J, Hainque B, Bruckert E, Oberlin F . Evidence for a link between adipose tissue interleukin-6 content and serum C-reactive protein concentrations in obese subjects. Circulation 1999; 99: 2221–2222.

    Article  CAS  Google Scholar 

  40. Esteve E, Castro A, Lopez-Bermejo A, Vendrell J, Ricart W, Fernandez-Real JM . Serum interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin sensitivity. Diabetes Care 2007; 30: 939–945.

    Article  CAS  Google Scholar 

  41. Paik JK, Kim OY, Koh SJ, Jang Y, Chae JS, Kim JY et al. Additive effect of interleukin-6 and C-reactive protein (CRP) single nucleotide polymorphism on serum CRP concentration and other cardiovascular risk factors. Clin Chim Acta 2007; 380: 68–74.

    Article  CAS  Google Scholar 

  42. Roytblat L, Rachinsky M, Fisher A, Greemberg L, Shapira Y, Douvdevani A et al. Raised interleukin-6 levels in obese patients. Obes Res 2000; 8: 673–675.

    Article  CAS  Google Scholar 

  43. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA . Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 2003; 52: 2784–2789.

    Article  CAS  Google Scholar 

  44. Suganami T, Nishida J, Ogawa Y . A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005; 25: 2062–2068.

    Article  CAS  Google Scholar 

  45. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V . Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 2000; 148: 209–214.

    Article  CAS  Google Scholar 

  46. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82: 4196–4200.

    CAS  PubMed  Google Scholar 

  47. Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D . Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 1992; 52: 4113–4116.

    CAS  PubMed  Google Scholar 

  48. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA . The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 2001; 280: E827–E847.

    Article  CAS  Google Scholar 

  49. Rathod M, Vangipuram SD, Krishnan B, Heydari AR, Holland TC, Dhurandhar NV . Viral mRNA expression but not DNA replication is required for lipogenic effect of human adenovirus Ad-36 in preadipocytes. Int J Obes (Lond) 2007; 31: 78–86.

    Article  CAS  Google Scholar 

  50. Vangipuram SD, Sheele J, Atkinson RL, Holland TC, Dhurandhar NV . A human adenovirus enhances preadipocyte differentiation. Obes Res 2004; 12: 770–777.

    Article  CAS  Google Scholar 

  51. Knorr CW, Allen SD, Torres AR, Smee DF . Effects of cidofovir treatment on cytokine induction in murine models of cowpox and vaccinia virus infection. Antiviral Res 2006; 72: 125–133.

    Article  CAS  Google Scholar 

  52. Chung S, Lapoint K, Martinez K, Kennedy A, Boysen SM, McIntosh MK . Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147: 5340–5351.

    Article  CAS  Google Scholar 

  53. Hube F, Lee YM, Rohrig K, Hauner H . The phosphodiesterase inhibitor IBMX suppresses TNF-alpha expression in human adipocyte precursor cells: a possible explanation for its adipogenic effect. Horm Metab Res 1999; 31: 359–362.

    Article  CAS  Google Scholar 

  54. Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM et al. Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3-L1 cells and C57BL/6J and ob/ob mice. J Nutr 2004; 134: 2673–2677.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J M Bouwman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouwman, J., Visseren, F., Bouter, K. et al. Infection-induced inflammatory response of adipocytes in vitro. Int J Obes 32, 892–901 (2008). https://doi.org/10.1038/ijo.2008.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.36

Keywords

This article is cited by

Search

Quick links