Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

AMP-activated protein kinase in the brain

Abstract

Since its discovery as an important regulator of fuel utilization in the periphery, AMP-activated protein kinase (AMPK) has become a contender for many important cell-intrinsic and organismal roles regarding energy balance in the central nervous system. The challenge will be to delineate the mechanisms by which neuronal AMPK can respond to cellular energy requirements as well as whole body energy demands. Thus, under physiological conditions in the brain, hypothalamic AMPK responds to changes in energy balance/food intake, whereas under pathological conditions, AMPK responds globally in the brain to energy challenge. Modulation of fatty acid metabolism affects energy balance in a context-specific manner and may provide an insight into other mechanisms for selective activation or inhibition of AMPK activity for therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartz M, Woods S, Porte Jr D, Seeley R, Baskin D . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  Google Scholar 

  2. Hardie DG, Carling D . The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 1997; 246: 259–273.

    Article  CAS  Google Scholar 

  3. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003; 31: 162–168.

    Article  CAS  Google Scholar 

  4. Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 2004; 279: 19970–19976.

    Article  CAS  Google Scholar 

  5. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    Article  CAS  Google Scholar 

  6. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004; 279: 12005–12008.

    Article  CAS  Google Scholar 

  7. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA . Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 2000; 97: 3450–3454.

    Article  CAS  Google Scholar 

  8. Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN et al. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem 2004; 279: 3817–3827.

    Article  CAS  Google Scholar 

  9. Thupari JN, Kim EK, Moran TH, Ronnett GV, Kuhajda FP . Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass. Am J Physiol Endocrinol Metab 2004; 287: E97–E104.

    Article  CAS  Google Scholar 

  10. Thupari JN, Landree LE, Ronnett GV, Kuhajda FP . C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc Natl Acad Sci USA 2002; 99: 9498–9502.

    Article  CAS  Google Scholar 

  11. McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV . Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 2005; 280: 20493–20502.

    Article  CAS  Google Scholar 

  12. Chirala SS, Huang WY, Jayakumar A, Sakai K, Wakil SJ . Animal fatty acid synthase: functional mapping and cloning and expression of the domain I constituent activities. Proc Natl Acad Sci USA 1997; 94: 5588–5593.

    Article  CAS  Google Scholar 

  13. Wakil S . Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 1989; 28: 4523–4530.

    Article  CAS  Google Scholar 

  14. Wakil SJ, Stoops JK, Joshi VC . Fatty acid synthesis and its regulation. Annu Rev Biochem 1983; 52: 537–579.

    Article  CAS  Google Scholar 

  15. Dyck JR, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R et al. Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J 2000; 350 (Part 2): 599–608.

    Article  CAS  Google Scholar 

  16. Kim KH . Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 1997; 17: 77–99.

    Article  CAS  Google Scholar 

  17. Lopez-Casillas F, Ponce-Castaneda MV, Kim KH . In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology 1991; 129: 1049–1058.

    Article  CAS  Google Scholar 

  18. Goodridge AG . Regulation of the activity of acetyl-coenzyme A carboxylase by palmitoyl-coenzyme A and citrate. J Biol Chem 1972; 247: 6946–6952.

    CAS  PubMed  Google Scholar 

  19. Abu-Elhiega L, Almarza-Ortega D, Baldini A, Wakil S . Human acetyl-coA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem 1997; 272: 10669–10677.

    Article  Google Scholar 

  20. Eaton S, Bartlett K, Quant PA . Carnitine palmitoyl transferase I and the control of beta-oxidation in heart mitochondria. Biochem Biophys Res Commun 2001; 285: 537–539.

    Article  CAS  Google Scholar 

  21. McGarry JD, Foster DW . Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980; 49: 395–420.

    Article  CAS  Google Scholar 

  22. Cook GA, Edwards TL, Jansen MS, Bahouth SW, Wilcox HG, Park EA . Differential regulation of carnitine palmitoyltransferase-I gene isoforms (CPT-I alpha and CPT-I beta) in the rat heart. J Mol Cell Cardiol 2001; 33: 317–329.

    Article  CAS  Google Scholar 

  23. Park EA, Steffen ML, Song S, Park VM, Cook GA . Cloning and characterization of the promoter for the liver isoform of the rat carnitine palmitoyltransferase I (L-CPT I) gene. Biochem J 1998; 330 (Part 1): 217–224.

    Article  CAS  Google Scholar 

  24. Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, Shima A, Terada H . Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett 1997; 409: 401–406.

    Article  CAS  Google Scholar 

  25. Price N, van der Leij F, Jackson V, Corstorphine C, Thomson R, Sorensen A et al. A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics 2002; 80: 433–442.

    Article  CAS  Google Scholar 

  26. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288: 2379–2381.

    Article  CAS  Google Scholar 

  27. Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F et al. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 1994; 269: 2361–2364.

    CAS  PubMed  Google Scholar 

  28. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996; 271: 611–614.

    Article  CAS  Google Scholar 

  29. Stapleton D, Woollatt E, Mitchelhill KI, Nicholl JK, Fernandez CS, Michell BJ et al. AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett 1997; 409: 452–456.

    Article  CAS  Google Scholar 

  30. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D . Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 2000; 346 (Part 3): 659–669.

    Article  CAS  Google Scholar 

  31. Kahn BB, Alquier T, Carling D, Hardie DG . AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15–25.

    Article  CAS  Google Scholar 

  32. Merrill GF, Kurth EJ, Hardie DG, Winder WW . AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: E1107–E1112.

    CAS  PubMed  Google Scholar 

  33. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW . 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48: 1667–1671.

    Article  CAS  Google Scholar 

  34. Leff T . AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans 2003; 31: 224–227.

    Article  CAS  Google Scholar 

  35. Hardie DG . New roles for the LKB1 → AMPK pathway. Curr Opin Cell Biol 2005; 17: 167–173.

    Article  CAS  Google Scholar 

  36. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    Article  CAS  Google Scholar 

  37. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  Google Scholar 

  38. Marsin AS, Bouzin C, Bertrand L, Hue L . The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 2002; 277: 30778–30783.

    Article  CAS  Google Scholar 

  39. Carling D, Zammit VA, Hardie DG . A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 1987; 223: 217–222.

    Article  CAS  Google Scholar 

  40. Gao S, Lane MD . Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci USA 2003; 100: 5628–5633.

    Article  CAS  Google Scholar 

  41. Hu Z, Cha SH, van Haasteren G, Wang J, Lane MD . Effect of centrally administered C75, a fatty acid synthase inhibitor, on ghrelin secretion and its downstream effects. Proc Natl Acad Sci USA 2005; 102: 3972–3977.

    Article  CAS  Google Scholar 

  42. Clegg DJ, Wortman MD, Benoit SC, McOsker CC, Seeley RJ . Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 2002; 51: 3196–3201.

    Article  CAS  Google Scholar 

  43. Takahashi KA, Smart JL, Liu H, Cone RD . The anorexigenic fatty acid synthase inhibitor, C75, is a nonspecific neuronal activator. Endocrinology 2004; 145: 184–193.

    Article  CAS  Google Scholar 

  44. Kim EK, Miller I, Landree LE, Borisy-Rudin FF, Brown P, Tihan T et al. Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment. Am J Physiol Endocrinol Metab 2002; 283: E867–E879.

    Article  CAS  Google Scholar 

  45. Miller I, Ronnett GV, Moran TH, Aja S . Anorexigenic C75 alters c-Fos in mouse hypothalamic and hindbrain subnuclei. NeuroReport 2004; 15: 925–929.

    Article  CAS  Google Scholar 

  46. Cha SH, Hu Z, Lane MD . Long-term effects of a fatty acid synthase inhibitor on obese mice: food intake, hypothalamic neuropeptides, and UCP3. Biochem Biophys Res Commun 2004; 317: 301–308.

    Article  CAS  Google Scholar 

  47. Shimokawa T, Kumar MV, Lane MD . Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA 2002; 99: 66–71.

    Article  CAS  Google Scholar 

  48. Giraudo SQ, Billington CJ, Levine AS . Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res 1998; 809: 302–306.

    Article  CAS  Google Scholar 

  49. Bloch B, Bugnon C, Fellmann D, Lenys D, Gouget A . Neurons of the rat hypothalamus reactive with antisera against endorphins, ACTH, MSH and beta-LPH. Cell Tissue Res 1979; 204: 1–15.

    Article  CAS  Google Scholar 

  50. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD . Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385: 165–168.

    Article  CAS  Google Scholar 

  51. Hagan MM, Rushing PA, Schwartz MW, Yagaloff KA, Burn P, Woods SC et al. Role of the CNS melanocortin system in the response to overfeeding. J Neurosci 1999; 19: 2362–2367.

    Article  CAS  Google Scholar 

  52. Clark JT, Kalra PS, Crowley WR, Kalra SP . Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984; 115: 427–429.

    Article  CAS  Google Scholar 

  53. Hahn TM, Breininger JF, Baskin DG, Schwartz MW . Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1: 271–272.

    Article  CAS  Google Scholar 

  54. Havel PJ, Hahn TM, Sindelar DK, Baskin DG, Dallman MF, Weigle DS et al. Effects of streptozotocin-induced diabetes and insulin treatment on the hypothalamic melanocortin system and muscle uncoupling protein 3 expression in rats. Diabetes 2000; 49: 244–252.

    Article  CAS  Google Scholar 

  55. Widdowson PS, Henderson L, Pickavance L, Buckingham R, Tadayyon M, Arch JR et al. Hypothalamic NPY status during positive energy balance and the effects of the NPY antagonist, BW 1229U91, on the consumption of highly palatable energy-rich diet. Peptides 1999; 20: 367–372.

    Article  CAS  Google Scholar 

  56. Nambu T, Sakurai T, Mizukami K, Hosova Y, Yanagisawa M, Goto K . Distribution of orexin neurons in the adult rat brain. Brain Res 1999; 827: 243–260.

    Article  CAS  Google Scholar 

  57. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243–247.

    Article  CAS  Google Scholar 

  58. Miselis RR . The subfornical organ's neural connections and their role in water balance. Peptides 1982; 3: 501–502.

    Article  CAS  Google Scholar 

  59. Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, O'Donohue TL . The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 1985; 15: 1159–1181.

    Article  CAS  Google Scholar 

  60. Arletti R, Benelli A, Bertolini A . Influence of oxytocin on feeding behavior in the rat. Peptides 1989; 10: 89–93.

    Article  CAS  Google Scholar 

  61. Uht RM, McKelvy JF, Harrison RW, Bohn MC . Demonstration of glucocorticoid receptor-like immunoreactivity in glucocorticoid-sensitive vasopressin and corticotropin-releasing factor neurons in the hypothalamic paraventricular nucleus. J Neurosci Res 1988; 19: 405–411, 468–469.

    Article  CAS  Google Scholar 

  62. Ceccatelli S, Cintra A, Hokfelt T, Fuxe K, Wikstrom AC, Gustafsson JA . Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus. Exp Brain Res 1989; 78: 33–42.

    Article  CAS  Google Scholar 

  63. Yang SY, He XY, Schulz H . Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem 1987; 27: 13027–13032.

    Google Scholar 

  64. Carling D . The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 2004; 29: 18–24.

    Article  CAS  Google Scholar 

  65. Makimura H, Mizuno TM, Yang XJ, Silverstein J, Beasley J, Mobbs CV . Cerulenin mimics effects of leptin on metabolic rate, food intake, and body weight independent of the melanocortin system, but unlike leptin, cerulenin fails to block neuroendocrine effects of fasting. Diabetes 2001; 50: 733–739.

    Article  CAS  Google Scholar 

  66. Gilbert M, Magnan C, Turban S, Andre J, Guerre-Millo M . Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose. Diabetes 2003; 52: 277–282.

    Article  CAS  Google Scholar 

  67. Musi N, Goodyear LJ . Targeting the AMP-activated protein kinase for the treatment of type 2 diabetes. Curr Drug Targets Immune Endocr Metabol Disord 2002; 2: 119–127.

    Article  CAS  Google Scholar 

  68. Sabina RL, Patterson D, Holmes EW . 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells. J Biol Chem 1985; 260: 6107–6114.

    CAS  PubMed  Google Scholar 

  69. Sheriff S, Chance WT, Fischer JE, Balasubramaniam A . Neuropeptide Y treatment and food deprivation increase cyclic AMP response element-binding in rat hypothalamus. Mol Pharmacol 1997; 51: 597–604.

    Article  CAS  Google Scholar 

  70. Love S . Apoptosis and brain ischaemia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 267–282.

    Article  CAS  Google Scholar 

  71. Ha HC, Snyder SH . Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis 2000; 7: 225–239.

    Article  CAS  Google Scholar 

  72. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC et al. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 2003; 278: 18426–18433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G V Ronnett.

Additional information

Conflict of interest

GV Ronnett is a consultant and stock holder for FASgen. GV Ronnett's work with FASgen does not directly involve AMPK. S Aja has declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronnett, G., Aja, S. AMP-activated protein kinase in the brain. Int J Obes 32 (Suppl 4), S42–S48 (2008). https://doi.org/10.1038/ijo.2008.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.122

Keywords

Search

Quick links