Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cardiac gene therapy: are we there yet?

Abstract

The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yusuf S, Reddy S, Ounpuu S, Anand S . Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001; 104: 2746–2753.

    Article  CAS  PubMed  Google Scholar 

  2. Reddy KS, Yusuf S . Emerging epidemic of cardiovascular disease in developing countries. Circulation 1998; 97: 596–601.

    Article  CAS  PubMed  Google Scholar 

  3. Johansen H, Strauss B, Arnold JM, Moe G, Liu P . On the rise: The current and projected future burden of congestive heart failure hospitalization in Canada. Can J Cardiol 2003; 19: 430–435.

    PubMed  Google Scholar 

  4. Blair JE, Huffman M, Shah SJ . Heart failure in North America. Curr Cardiol Rev 2013; 9: 128–146.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 2015; 131: e29–322.

    PubMed  Google Scholar 

  6. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000; 101: 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  7. Tarride JE, Lim M, DesMeules M, Luo W, Burke N, O'Reilly D et al. A review of the cost of cardiovascular disease. Can J Cardiol 2009; 25: e195–e202.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olivier C, Williams-Jones B . Global pharmacogenomics: where is the research taking us? Glob Public Health 2014; 9: 312–324.

    Article  PubMed  Google Scholar 

  9. Laflamme MA, Murry CE . Heart regeneration. Nature 2011; 473: 326–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tilemann L, Ishikawa K, Weber T, Hajjar RJ . Gene therapy for heart failure. Circ Res 2012; 110: 777–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE . Gene therapy: targeting the myocardium. Heart 2008; 94: 89–99.

    Article  CAS  PubMed  Google Scholar 

  12. Baker AH . Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol 2004; 84: 279–299.

    Article  CAS  PubMed  Google Scholar 

  13. Kay MA . State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12: 316–328.

    Article  CAS  PubMed  Google Scholar 

  14. Gill DR, Pringle IA, Hyde SC . Progress and prospects: the design and production of plasmid vectors. Gene Ther 2009; 16: 165–171.

    Article  CAS  PubMed  Google Scholar 

  15. Mason D, Chen YZ, Krishnan HV, Sant S . Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215: 101–111.

    Article  CAS  PubMed  Google Scholar 

  16. Bartsch M, Weeke-Klimp AH, Meijer DK, Scherphof GL, Kamps JA . Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 2005; 15: 59–92.

    Article  CAS  PubMed  Google Scholar 

  17. Gracey Maniar LE, Maniar JM, Chen ZY, Lu J, Fire AZ, Kay MA, Minicircle DNA . vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther 2013; 21: 131–138.

    Article  CAS  PubMed  Google Scholar 

  18. Kay MA, He CY, Chen ZY . A robust system for production of minicircle DNA vectors. Nat Biotechnol 2010; 28: 1287–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oliveira PH, Mairhofer J . Marker-free plasmids for biotechnological applications - implications and perspectives. Trends Biotechnol 2013; 31: 539–547.

    Article  CAS  PubMed  Google Scholar 

  20. Lu J, Zhang F, Kay MA . A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. Mol Ther 2013; 21: 954–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu J, Zhang F, Xu S, Fire AZ, Kay MA . The extragenic spacer length between the 5' and 3' ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther 2012; 20: 2111–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katz MG, Fargnoli AS, Williams RD, Bridges CR . Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 2013; 24: 914–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su CH, Wu YJ, Wang HH, Yeh HI . Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol 2012; 303: H629–H638.

    Article  CAS  PubMed  Google Scholar 

  24. Scimia MC, Cannavo A, Koch WJ . Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Rev Cardiovasc Ther 2013; 11: 999–1013.

    Article  CAS  PubMed  Google Scholar 

  25. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  PubMed  Google Scholar 

  26. Matsuda T, Cepko CL . Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004; 101: 16–22.

    Article  CAS  PubMed  Google Scholar 

  27. Hargrave B, Downey H, Strange R Jr., Murray L, Cinnamond C, Lundberg C et al. Electroporation-mediated gene transfer directly to the swine heart. Gene Ther 2013; 20: 151–157.

    Article  CAS  PubMed  Google Scholar 

  28. Escoffre JM, Zeghimi A, Novell A, Bouakaz A . In-vivo gene delivery by sonoporation: recent progress and prospects. Curr Gene Ther 2013; 13: 2–14.

    Article  CAS  PubMed  Google Scholar 

  29. Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol 2004; 30: 1523–1529.

    Article  PubMed  Google Scholar 

  30. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J . Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 2013; 15: 65–77.

    Article  CAS  PubMed  Google Scholar 

  31. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T . Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993; 73: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  32. French BA, Mazur W, Geske RS, Bolli R . Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994; 90: 2414–2424.

    Article  CAS  PubMed  Google Scholar 

  33. French BA, Mazu,r W, Ali NM, Geske RS, Finnigan JP, Rodgers GP et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation 1994; 90: 2402–2413.

    Article  CAS  PubMed  Google Scholar 

  34. Lemarchand P, Jaffe HA, Danel C, Cid MC, Kleinman HK, Stratford-Perricaudet LD et al. Adenovirus-mediated transfer of a recombinant human alpha 1-antitrypsin cDNA to human endothelial cells. Proc Natl Acad Sci USA 1992; 89: 6482–6486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lemarchand P, Jones M, Yamada I, Crystal RG . In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res 1993; 72: 1132–1138.

    Article  CAS  PubMed  Google Scholar 

  36. Baek S, March KL . Gene therapy for restenosis: getting nearer the heart of the matter. Circ Res 1998; 82: 295–305.

    Article  CAS  PubMed  Google Scholar 

  37. DeYoung MB, Dichek DA . Gene therapy for restenosis: are we ready? Circ Res 1998; 82: 306–313.

    Article  CAS  PubMed  Google Scholar 

  38. Baker AH, Mehta D, George SJ, Angelini GD . Prevention of vein graft failure: potential applications for gene therapy. Cardiovasc Res 1997; 35: 442–450.

    Article  CAS  PubMed  Google Scholar 

  39. Newman KD, Dunn PF, Owens JW, Schulick AH, Virmani R, Sukhova G et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 1995; 96: 2955–2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen S, Schneider DB, Driscoll RM, Vassalli G, Sassani AB, Dichek DA et al. Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler Thromb Vasc Biol 2000; 20: 1452–1458.

    Article  CAS  PubMed  Google Scholar 

  41. Wen S, Driscoll RM, Schneider DB, Dichek DA . Inclusion of the E3 region in an adenoviral vector decreases inflammation and neointima formation after arterial gene transfer. Arterioscler Thromb Vasc Biol 2001; 21: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  42. Engelhardt JF, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 1994; 91: 6196–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo Z, Palasis M, Yamakawa M, Liu LX, Vincent KA, Trudell L et al. Catheter-mediated delivery of adenoviral vectors expressing beta-adrenergic receptor kinase C-terminus inhibits intimal hyperplasia and luminal stenosis in rabbit iliac arteries. J Gene Med 2004; 6: 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  44. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  45. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003; 107: 2677–2683.

    Article  CAS  PubMed  Google Scholar 

  46. Oka K, Pastore L, Kim IH, Merched A, Nomura S, Lee HJ et al. Long-term stable correction of low-density lipoprotein receptor-deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor. Circulation 2001; 103: 1274–1281.

    Article  CAS  PubMed  Google Scholar 

  47. Pacak CA, Byrne BJ . AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19: 1582–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skubis-Zegadlo J, Stachurska A, Malecki M . Vectrology of adeno-associated viruses (AAV). Med Wieku Rozwoj 2013; 17: 202–206.

    PubMed  Google Scholar 

  49. Young SM Jr., McCarty DM, Degtyareva N, Samulski RJ . Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 2000; 74: 3953–3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petrs-Silva H, Linden R . Advances in recombinant adeno-associated viral vectors for gene delivery. Curr Gene Ther 2013; 13: 335–345.

    Article  CAS  PubMed  Google Scholar 

  51. Nicklin SA, Buening H, Dishart KL, de Alwis M, Girod A, Hacker U et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001; 4: 174–181.

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Kapturczak M, Loiler SA, Zolotukhin S, Glushakova OY, Madsen KM et al. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther 2005; 16: 235–247.

    Article  CAS  PubMed  Google Scholar 

  53. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 2008; 19: 1359–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE . Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 2010; 3: 81–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao G, Bish LT, Sleeper MM, Mu X, Sun L, Lou Y et al. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques. Hum Gene Ther 2011; 22: 979–984.

    Article  CAS  PubMed  Google Scholar 

  56. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006; 13: 683–693.

    Article  CAS  PubMed  Google Scholar 

  57. Gahery-Segard H, Juillard V, Gaston J, Lengagne R, Pavirani A, Boulanger P et al. Humoral immune response to the capsid components of recombinant adenoviruses: routes of immunization modulate virus-induced Ig subclass shifts. Eur J Immunol 1997; 27: 653–659.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 2006; 108: 3321–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manning WC, Zhou S, Bland MP, Escobedo JA, Dwarki V . Transient immunosuppression allows transgene expression following readministration of adeno-associated viral vectors. Hum Gene Ther 1998; 9: 477–485.

    Article  CAS  PubMed  Google Scholar 

  60. Kay MA, Meuse L, Gown AM, Linsley P, Hollenbaugh D, Aruffo A et al. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci USA 1997; 94: 4686–4691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vandenberghe LH, Wilson JM, Gao G . Tailoring the AAV vector capsid for gene therapy. Gene Ther 2009; 16: 311–319.

    Article  CAS  PubMed  Google Scholar 

  62. Levy C, Verhoeyen E, Cosset FL . Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 2015; 24: 79–85.

    Article  CAS  PubMed  Google Scholar 

  63. Di Pasquale E, Latronico MV, Jotti GS, Condorelli G . Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 2012; 19: 642–648.

    Article  CAS  PubMed  Google Scholar 

  64. Delzor A, Escartin C, Deglon N . Lentiviral vectors: a powerful tool to target astrocytes in vivo. Curr Drug Targets 2013; 14: 1336–1346.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Mani P, Sarkar DP, Roy-Chowdhury N, Roy-Chowdhury J . Ex vivo gene transfer into hepatocytes. Methods Mol Biol 2009; 481: 117–140.

    Article  CAS  PubMed  Google Scholar 

  66. Wasala NB, Shin JH, Duan D . The evolution of heart gene delivery vectors. J Gene Med 2011; 13: 557–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ly H, Kawase Y, Yoneyama R, Hajjar RJ . Gene therapy in the treatment of heart failure. Physiology (Bethesda) 2007; 22: 81–96.

    CAS  Google Scholar 

  68. Nayak S, Herzog RW . Progress and prospects: immune responses to viral vectors. Gene Ther 2010; 17: 295–304.

    Article  CAS  PubMed  Google Scholar 

  69. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95: 5251–5256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 1999; 104: 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Donnell JM, Lewandowski ED . Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther 2005; 12: 958–964.

    Article  CAS  PubMed  Google Scholar 

  72. Ding Z, Fach C, Sasse A, Godecke A, Schrader J . A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Ther 2004; 11: 260–265.

    Article  CAS  PubMed  Google Scholar 

  73. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  74. Koransky ML, Robbins RC, Blau HM . VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc Med 2002; 12: 108–114.

    Article  CAS  PubMed  Google Scholar 

  75. Edelberg JM, Huang DT, Josephson ME, Rosenberg RD . Molecular enhancement of porcine cardiac chronotropy. Heart 2001; 86: 559–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther 2000; 7: 232–240.

    Article  CAS  PubMed  Google Scholar 

  77. Hayase M, Del Monte F, Kawase Y, Macneill BD, McGregor J, Yoneyama R et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol 2005; 288: H2995–H3000.

    Article  CAS  PubMed  Google Scholar 

  78. Fromes Y, Salmon A, Wang X, Collin H, Rouche A, Hagege A et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther 1999; 6: 683–688.

    Article  CAS  PubMed  Google Scholar 

  79. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T . Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation 1993; 88: 2838–2848.

    Article  CAS  PubMed  Google Scholar 

  80. Preovolos AC, Mennen MT, Bilney A, Mariani J, Kaye DM, Power JM . Development of a novel perfusion technique to allow targeted delivery of gene therapy—the V-Focus system. J Extra Corpor Technol 2006; 38: 51–52.

    PubMed  PubMed Central  Google Scholar 

  81. Katz MG, Fargnoli AS, Williams RD, Steuerwald NM, Isidro A, Ivanina AV et al. Safety and efficacy of high-dose adeno-associated virus 9 encoding sarcoplasmic reticulum Ca(2+) adenosine triphosphatase delivered by molecular cardiac surgery with recirculating delivery in ovine ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2014; 148: 1065–1072; 1073e1-2; discussion 1072-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bridges CR, Burkman JM, Malekan R, Konig SM, Chen H, Yarnall CB et al. Global cardiac-specific transgene expression using cardiopulmonary bypass with cardiac isolation. Ann Thorac Surg 2002; 73: 1939–1946.

    Article  PubMed  Google Scholar 

  83. Bridges CR, Gopal K, Holt DE, Yarnall C, Cole S, Anderson RB et al. Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg 2005; 130: 1364.

    Article  PubMed  Google Scholar 

  84. Gyongyosi M, Dib N . Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol 2011; 8: 393–404.

    Article  PubMed  Google Scholar 

  85. Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000; 102: 965–974.

    Article  CAS  PubMed  Google Scholar 

  86. Kornowski R, Hong MK, Leon MB . Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation 1998; 98: 1837–1841.

    Article  CAS  PubMed  Google Scholar 

  87. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 2012–2018.

    Article  CAS  PubMed  Google Scholar 

  88. Park SW, Gwon HC, Jeong JO, Byun J, Kang HS, You JR et al. Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Hum Gene Ther 2001; 12: 893–903.

    Article  CAS  PubMed  Google Scholar 

  89. Vinge LE, Raake PW, Koch WJ . Gene therapy in heart failure. Circ Res 2008; 102: 1458–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Losordo DW, Vale PR, Isner JM . Gene therapy for myocardial angiogenesis. Am Heart J 1999; 138: S132–S141.

    Article  CAS  PubMed  Google Scholar 

  91. Giacca M, Zacchigna S . VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 2012; 19: 622–629.

    Article  CAS  PubMed  Google Scholar 

  92. Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR . Ca2+ cycling and new therapeutic approaches for heart failure. Circulation 2010; 121: 822–830.

    Article  PubMed  PubMed Central  Google Scholar 

  93. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shah AM, Mann DL . In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet 2011; 378: 704–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim H, Kim HA, Bae YM, Choi JS, Lee M . Dexamethasone-conjugated polyethylenimine as an efficient gene carrier with an anti-apoptotic effect to cardiomyocytes. J Gene Med 2009; 11: 515–522.

    Article  CAS  PubMed  Google Scholar 

  96. He Z, Li H, Zuo S, Pasha Z, Wang Y, Yang Y et al. Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells Dev 2011; 20: 1771–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE . Wnt5a and Wnt11 are essential for second heart field progenitor development. Development 2012; 139: 1931–1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Perrelli MG, Pagliaro P, Penna C . Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol 2011; 3: 186–200.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Heusch G, Boengler K, Schulz R . Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 2008; 118: 1915–1919.

    Article  PubMed  Google Scholar 

  100. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362: 697–703.

    Article  CAS  PubMed  Google Scholar 

  101. Kilian EG, Sadoni S, Vicol C, Kelly R, van Hulst K, Schwaiger M et al. Myocardial transfection of hypoxia inducible factor-1alpha via an adenoviral vector during coronary artery bypass grafting. - A multicenter phase I and safety study. Circ J 2010; 74: 916–924.

    Article  PubMed  Google Scholar 

  102. Gyongyosi M, Khorsand A, Zamini S, Sperker W, Strehblow C, Kastrup J et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation 2005; 112: I157–I165.

    Article  PubMed  Google Scholar 

  103. Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 2009; 17: 1109–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 2006; 13: 1503–1511.

    Article  CAS  PubMed  Google Scholar 

  105. Favaloro L, Diez M, Mendiz O, Janavel GV, Valdivieso L, Ratto R et al. High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (Genesis-I). A phase I, open-label, two-year follow-up trial. Catheter Cardiovasc Interv 2013; 82: 899–906.

    Article  PubMed  Google Scholar 

  106. Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 2003; 42: 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  107. Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 2007; 50: 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  108. Kaski JC, Consuegra-Sanchez L . Evaluation of ASPIRE trial: a Phase III pivotal registration trial, using intracoronary administration of Generx (Ad5FGF4) to treat patients with recurrent angina pectoris. Expert Opin Biol Ther 2013; 13: 1749–1753.

    Article  CAS  PubMed  Google Scholar 

  109. Kukula K, Chojnowska L, Dabrowski M, Witkowski A, Chmielak Z, Skwarek M et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J 2011; 161: 581–589.

    Article  CAS  PubMed  Google Scholar 

  110. Shanks N, Greek R, Greek J . Are animal models predictive for humans? Philos Ethics Humanit Med 2009; 4: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gupta R, Tongers J, Losordo DW . Human studies of angiogenic gene therapy. Circ Res 2009; 105: 724–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Carmeliet P, Jain RK . Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith AH, Kuliszewski MA, Liao C, Rudenko D, Stewart DJ, Leong-Poi H . Sustained improvement in perfusion and flow reserve after temporally separated delivery of vascular endothelial growth factor and angiopoietin-1 plasmid deoxyribonucleic acid. J Am Coll Cardiol 2012; 59: 1320–1328.

    Article  CAS  PubMed  Google Scholar 

  114. Yano M, Ikeda Y, Matsuzaki M . Altered intracellular Ca2+ handling in heart failure. J Clin Invest 2005; 115: 556–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hu ST, Liu GS, Shen YF, Wang YL, Tang Y, Yang YJ . Defective Ca(2+) handling proteins regulation during heart failure. Physiol Res 2011; 60: 27–37.

    CAS  PubMed  Google Scholar 

  116. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Greenberg B, Yaroshinsky A, Zsebo KM, Butler J, Felker GM, Voors AA et al. Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart Fail 2014; 2: 84–92.

    Article  PubMed  Google Scholar 

  118. Imbalzano E, Mandraffino G, Casciaro M, Quartuccio S, Saitta A, Gangemi S . Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: a systematic review. Heart Fail Rev, e-pub ahead of print 30 January 2016.

  119. Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P . Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther 2014; 21: 131–138.

    Article  CAS  PubMed  Google Scholar 

  120. Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M et al. S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy. J Mol Cell Cardiol 2009; 47: 445–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang W, Asp ML, Guerrero-Serna G, Metzger JM . Differential effects of S100 proteins A2 and A6 on cardiac Ca(2+) cycling and contractile performance. J Mol Cell Cardiol 2014; 72: 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K et al. Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1's triple action in cardiovascular pathophysiology. Future Cardiol 2015; 11: 309–321.

    Article  CAS  PubMed  Google Scholar 

  123. Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger ST et al. Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2). J Biol Chem 2003; 278: 48404–48412.

    Article  CAS  PubMed  Google Scholar 

  124. Shukla PC, Singh KK, Quan A, Al-Omran M, Teoh H, Lovren F et al. BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2011; 2: 593.

    Article  CAS  PubMed  Google Scholar 

  125. Teoh H, Quan A, Creighton AK, Annie Bang KW, Singh KK, Shukla PC et al. BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis. Gene Ther 2013; 20: 51–61.

    Article  CAS  PubMed  Google Scholar 

  126. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994; 264: 582–586.

    Article  CAS  PubMed  Google Scholar 

  127. Iaccarino G, Ciccarelli M, Sorriento D, Galasso G, Campanile A, Santulli G et al. Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res 2005; 97: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  128. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K . Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 2000; 101: 660–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001; 104: 330–335.

    Article  CAS  PubMed  Google Scholar 

  130. Cao J, Zhu T, Lu L, Geng L, Wang L, Zhang Q et al. Estrogen induces cardioprotection in male C57BL/6 J mice after acute myocardial infarction via decreased activity of matrix metalloproteinase-9 and increased Akt-Bcl-2 anti-apoptotic signaling. Int J Mol Med 2011; 28: 231–237.

    CAS  PubMed  Google Scholar 

  131. Miyata S, Takemura G, Kosai K, Takahashi T, Esaki M, Li L et al. Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. Am J Pathol 2010; 176: 687–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee S, Bick-Forrester J, Makkar RR, Forrester JS . Stem-cell repair of infarcted myocardium: ready for clinical application? Am Heart Hosp J 2004; 2: 100–106.

    Article  PubMed  Google Scholar 

  133. Forrester JS, Price MJ, Makkar RR . Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 2003; 108: 1139–1145.

    Article  PubMed  Google Scholar 

  134. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 2003; 21: 363–371.

    Article  CAS  PubMed  Google Scholar 

  135. Pyo RT, Sui J, Dhume A, Palomeque J, Blaxall BC, Diaz G et al. CXCR4 modulates contractility in adult cardiac myocytes. J Mol Cell Cardiol 2006; 41: 834–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen J, Chemaly E, Liang L, Kho C, Lee A, Park J et al. Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 2010; 176: 1705–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rendahl KG, Leff SE, Otten GR, Spratt SK, Bohl D, Van Roey M et al. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat Biotechnol 1998; 16: 757–761.

    Article  CAS  PubMed  Google Scholar 

  138. Bohl D, Salvetti A, Moullier P, Heard JM . Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 1998; 92: 1512–1517.

    CAS  PubMed  Google Scholar 

  139. Ye X, Rivera VM, Zoltick P, Cerasoli F Jr., Schnell MA, Gao G et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999; 283: 88–91.

    Article  CAS  PubMed  Google Scholar 

  140. Ferrara K, Pollard R, Borden M . Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 2007; 9: 415–447.

    Article  CAS  PubMed  Google Scholar 

  141. Fujii H, Sun Z, Li SH, Wu J, Fazel S, Weisel RD et al. Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice. JACC Cardiovasc Imaging 2009; 2: 869–879.

    Article  PubMed  Google Scholar 

  142. Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H et al. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J 2011; 32: 2075–2084.

    Article  CAS  PubMed  Google Scholar 

  143. Lee PJ, Rudenko D, Kuliszewski MA, Liao C, Kabir MG, Connelly KA et al. Survivin gene therapy attenuates left ventricular systolic dysfunction in doxorubicin cardiomyopathy by reducing apoptosis and fibrosis. Cardiovasc Res 2014; 101: 423–433.

    Article  CAS  PubMed  Google Scholar 

  144. Gill SL, O'Neill H, McCoy RJ, Logeswaran S, O'Brien F, Stanton A et al. Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in-vitro model. Technol Health Care 2014; 22: 37–51.

    PubMed  Google Scholar 

  145. Yan P, Chen KJ, Wu J, Sun L, Sung HW, Weisel RD et al. The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium, enhance Timp3 gene transfection and improve cardiac function. Biomaterials 2014; 35: 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  146. Wen Z, Huang W, Feng Y, Cai W, Wang Y, Wang X et al. MicroRNA-377 regulates mesenchymal stem cell-induced angiogenesis in ischemic hearts by targeting VEGF. PLoS One 2014; 9: e104666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE et al. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 2011; 124: S46–S54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hong J, Ku SH, Lee MS, Jeong JH, Mok H, Choi D et al. Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction. Biomaterials 2014; 35: 7562–7573.

    Article  CAS  PubMed  Google Scholar 

  149. Cao WJ, Rosenblat JD, Roth NC, Kuliszewski MA, Matkar PN, Rudenko D et al. Therapeutic Angiogenesis by Ultrasound-Mediated MicroRNA-126-3p Delivery. Arterioscler Thromb Vasc Biol 2015; 35: 2401–2411.

    Article  CAS  PubMed  Google Scholar 

  150. Rincon MY, VandenDriessche T, Chuah MK . Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res 2015; 108: 4–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11: 636–646.

    Article  CAS  PubMed  Google Scholar 

  152. Lai Y, Yue Y, Liu M, Ghosh A, Engelhardt JF, Chamberlain JS et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23: 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 2007; 15: 320–329.

    Article  CAS  PubMed  Google Scholar 

  154. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 2011; 8: 861–869.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Leong-Poi lab and our collaborators at St Michael’s Hospital for their valuable contributions to some of the results discussed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Singh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matkar, P., Leong-Poi, H. & Singh, K. Cardiac gene therapy: are we there yet?. Gene Ther 23, 635–648 (2016). https://doi.org/10.1038/gt.2016.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.43

This article is cited by

Search

Quick links