Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy for cardiovascular diseases in China: basic research

Abstract

Cardiovascular disease has become a major disease affecting health in the whole world. Gene therapy, delivering foreign normal genes into target cells to repair damages caused by defects and abnormal genes, shows broad prospects in treating different kinds of cardiovascular diseases. China has achieved great progress of basic gene therapy researches and pathogenesis of cardiovascular diseases in recent years. This review will summarize the latest research about gene therapy of proteins, epigenetics, including noncoding RNAs and genome-editing technology in myocardial infarction, cardiac ischemia–reperfusion injury, atherosclerosis, muscle atrophy, and so on in China. We wish to highlight some important findings about the essential roles of basic gene therapy in this field, which might be helpful for searching potential therapeutic targets for cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.

    Google Scholar 

  2. Pedersen MT, Vorup J, Bangsbo J. Effect of a 26-month floorball training on male elderly’s cardiovascular fitness, glucose control, body composition, and functional capacity. J Sport Health Sci. 2018;7:149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deng HX, Wang Y, Ding QR, Li DL, Wei YQ. Gene therapy research in Asia. Gene Ther. 2017;24:572–7.

    Article  CAS  PubMed  Google Scholar 

  4. Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J Clin Investig. 2013;123:53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol. 2012;303:H629–38.

    Article  CAS  PubMed  Google Scholar 

  6. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12:316–28.

    Article  CAS  PubMed  Google Scholar 

  8. Mao Q, Liang XL, Wu YF, Pang YH, Zhao XJ, Lu YX. ILK promotes survival and self-renewal of hypoxic MSCs via the activation of lncTCF7-Wnt pathway induced by IL-6/STAT3 signaling. Gene Ther. 2019;26:165–76.

    Article  CAS  PubMed  Google Scholar 

  9. Shan S, Liu Z, Guo T, Wang M, Tian S, Zhang Y, et al. Growth arrest-specific gene 6 transfer promotes mesenchymal stem cell survival and cardiac repair under hypoxia and ischemia via enhanced autocrine signaling and paracrine action. Arch Biochem Biophys. 2018;660:108–20.

    Article  CAS  PubMed  Google Scholar 

  10. Meng X, Li J, Yu M, Yang J, Zheng M, Zhang J, et al. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction. J Cell Physiol. 2018;233:587–95.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Li S. Effects of transplantation of hypoxia-inducible factor-1alpha genemodified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction. Anatol J Cardiol. 2018;20:318–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Tian X, Peng C, Yan C, Li Y, Sun M, et al. Transplantation of CREG modified embryonic stem cells improves cardiac function after myocardial infarction in mice. Biochem Biophys Res Commun. 2018;503:482–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu W, Zhao M, Mattapally S, Chen S, Zhang J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ Res. 2018;122:88–96.

    Article  CAS  PubMed  Google Scholar 

  14. Wu Z, Chen G, Zhang J, Hua Y, Li J, Liu B, et al. Treatment of myocardial infarction with gene-modified mesenchymal stem cells in a small molecular hydrogel. Sci Rep. 2017;7:15826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang W, Tan B, Chen J, Bao R, Zhang X, Liang S, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials. 2018;160:69–81.

    Article  CAS  PubMed  Google Scholar 

  16. Shao W, Pei X, Cui C, Askew C, Dobbins A, Chen X, et al. Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Ther. 2019;26:504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang C, Zhang B, Lin Y, Dong Y. Effects of adenovirus-mediated VEGF165 gene therapy on myocardial infarction. Ann Clin Lab Sci. 2018;48:208–15.

    CAS  PubMed  Google Scholar 

  18. Xia JB, Wu HY, Lai BL, Zheng L, Zhou DC, Chang ZS, et al. Gene delivery of hypoxia-inducible VEGF targeting collagen effectively improves cardiac function after myocardial infarction. Sci Rep. 2017;7:13273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang L, Meier EM, Tian S, Lei I, Liu L, Xian S, et al. Transplantation of Isl1(+) cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Res Ther. 2017;8:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dai Y, Song J, Li W, Yang T, Yue X, Lin X, et al. RhoE fine-tunes inflammatory response in myocardial infarction. Circulation. 2019;139:1185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang TT, Li YY, Li JJ, Wang K, Han Y, Dong WY, et al. Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction. Theranostics. 2018;8:4552–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun Y, Xie Y, Du L, Sun J, Liu Z. Inhibition of BRD4 attenuates cardiomyocyte apoptosis via NF-kappaB pathway in a rat model of myocardial infarction. Cardiovasc Ther. 2018;36:1–8.

    Article  CAS  Google Scholar 

  23. Li T, Su Y, Yu X, Mouniir DSA, Masau JF, Wei X, et al. Trop2 guarantees cardioprotective effects of cortical bone-derived stem cells on myocardial ischemia/reperfusion injury. Cell Transplant. 2018;27:1256–68.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu Z, Witman N, Wang W, Li D, Yan B, Deng M, et al. Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia. J Control Release. 2019;310:103–14.

    Article  CAS  PubMed  Google Scholar 

  25. Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, et al. Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med. 2019;17:42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Chen B, Yang X, Zhang C, Jiao Y, Li P, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 2019;140:751–64.

    Article  CAS  PubMed  Google Scholar 

  27. Li T, Shen Y, Su L, Fan X, Lin F, Ye X, et al. Cardiac adenovirus-associated viral presenilin 1 gene delivery protects the left ventricular function of the heart via regulating RyR2 function in post-ischaemic heart failure. J Drug Target. 2018;26:895–904.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Cao C, Xin J, Lv P, Chen D, Li S, et al. Treatment with placental growth factor attenuates myocardial ischemia/reperfusion injury. PLoS ONE. 2018;13:e0202772.

    Article  CAS  Google Scholar 

  29. Meng Z, Song MY, Li CF, Zhao JQ. shRNA interference of NLRP3 inflammasome alleviate ischemia reperfusion-induced myocardial damage through autophagy activation. Biochem Biophys Res Commun. 2017;494:728–35.

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Yang C, Yang J, Ding J, Li X, Yu Q, et al. RP105 alleviates myocardial ischemia reperfusion injury via inhibiting TLR4/TRIF signaling pathways. Int J Mol Med. 2018;41:3287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang S, He F, Li Z, Hu Y, Huangfu N, Chen X. YB1 protects cardiac myocytes against H2O2induced injury via suppression of PIAS3 mRNA and phosphorylation of STAT3. Mol Med Rep. 2019;19:4579–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Lei T, Yuan J, Wu Y, Shen X, Gao J, et al. GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Redox Biol. 2018;17:25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li LL, Peng C, Zhang M, Liu Y, Li H, Chen H, et al. Mesenchymal stem cells overexpressing adrenomedullin improve heart function through antifibrotic action in rats experiencing heart failure. Mol Med Rep. 2018;17:1437–44.

    CAS  PubMed  Google Scholar 

  34. Wang Y, Ma W, Lu S, Yan L, Hu F, Wang Z, et al. Androgen receptor regulates cardiac fibrosis in mice with experimental autoimmune myocarditis by increasing microRNA-125b expression. Biochem Biophys Res Commun. 2018;506:130–6.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Tan Y, Xu B, Lu L, Zhao M, Ma J, et al. GPR30 attenuates myocardial fibrosis in diabetic ovariectomized female rats: role of iNOS signaling. DNA Cell Biol. 2018;37:821–30.

    Article  CAS  PubMed  Google Scholar 

  36. Du P, Chang Y, Dai F, Wei C, Zhang Q, Li J. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice. Gene. 2018;667:10–17.

    Article  CAS  PubMed  Google Scholar 

  37. Wang B, Nie J, Wu L, Hu Y, Wen Z, Dong L, et al. AMPKalpha2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res. 2018;122:712–29.

    Article  CAS  PubMed  Google Scholar 

  38. Dvornikov AV, Wang M, Yang J, Zhu P, Le T, Lin X, et al. Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. J Mol Cell Cardiol. 2019;133:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao J, Xie Y, Lin Q, Yang X, An X, Xia Y, et al. Immunoproteasome subunit beta5i regulates diet-induced atherosclerosis through altering MerTK-mediated efferocytosis in Apoe knockout mice. J Pathol. 2020;250:275–87.

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Chen H, Chen X, Li Y, Hua P, Wei J, et al. Discovery of tissue selective liver X receptor agonists for the treatment of atherosclerosis without causing hepatic lipogenesis. Eur J Med Chem. 2019;182:111647.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Wang M, Xie Y, Jiang Y, Liu M, Yu S, et al. Activation of GPR39 with the agonist TC-G 1008 ameliorates ox-LDL-induced attachment of monocytes to endothelial cells. Eur J Pharmacol. 2019;858:172451.

    Article  CAS  PubMed  Google Scholar 

  42. Yao Y, Li B, Liu C, Fu C, Li P, Guo Y, et al. Reduced plasma kallistatin is associated with the severity of coronary artery disease, and kallistatin treatment attenuates atherosclerotic plaque formation in mice. J Am Heart Assoc. 2018;7:e009562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Zhou W, Cao C, Zhang W, Liu G, Zhang J. Amelioration of atherosclerosis in apolipoprotein E-deficient mice by combined RNA interference of lipoprotein-associated phospholipase A2 and YKL-40. PLoS ONE. 2018;13:e0202797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang XT, Wu XD, Lu YX, Sun YH, Zhu HH, Liang JB, et al. Egr-1 is involved in coronary microembolization-induced myocardial injury via Bim/Beclin-1 pathway-mediated autophagy inhibition and apoptosis activation. Aging. 2018;10:3136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ni L, Scott L Jr., Campbell HM, Pan X, Alsina KM, Reynolds J, et al. Atrial-specific gene delivery using an adeno-associated viral vector. Circ Res. 2019;124:256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, et al. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis. 2018;9:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sun D, Zhang T, Su S, Hao G, Chen T, Li QZ, et al. Body mass index drives changes in DNA methylation: a longitudinal study. Circ Res. 2019;125:824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci. 2018;7:433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou S, Lei D, Bu F, Han H, Zhao S, Wang Y. MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-induced H9c2 cells. J Cardiovasc Transl Res. 2019;12:358–65.

    Article  PubMed  Google Scholar 

  50. Liu Y, Liu Z, Xie Y, Zhao C, Xu J. Serum extracellular vesicles retard H9C2 cell senescence by suppressing miR-34a expression. J Cardiovasc Transl Res. 2019;12:45–50.

    Article  PubMed  Google Scholar 

  51. Tu Y, Qiu Y, Liu L, Huang T, Tang H, Liu Y, et al. miR-15a/15b cluster modulates survival of mesenchymal stem cells to improve its therapeutic efficacy of myocardial infarction. J Am Heart Assoc. 2019;8:e010157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8:268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nie JJ, Qiao B, Duan S, Xu C, Chen B, Hao W, et al. Unlockable nanocomplexes with self-accelerating nucleic acid release for effective staged gene therapy of cardiovascular diseases. Adv Mater. 2018;30:e1801570.

    Article  PubMed  CAS  Google Scholar 

  54. Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F, et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun. 2019;10:1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yang W, Han Y, Yang C, Chen Y, Zhao W, Su X, et al. MicroRNA-19b-1 reverses ischaemia-induced heart failure by inhibiting cardiomyocyte apoptosis and targeting Bcl2 l11/BIM. Heart Vessels. 2019;34:1221–9.

    Article  PubMed  Google Scholar 

  56. Zhu ZD, Ye JY, Niu H, Ma YM, Fu XM, Xia ZH, et al. Effects of microRNA-292-5p on myocardial ischemia-reperfusion injury through the peroxisome proliferator-activated receptor-alpha/-gamma signaling pathway. Gene Ther. 2018;25:234–48.

    Article  CAS  PubMed  Google Scholar 

  57. Zhi Y, Xu C, Sui D, Du J, Xu FJ, Li Y. Effective delivery of hypertrophic miRNA inhibitor by cholesterol-containing nanocarriers for preventing pressure overload induced cardiac hypertrophy. Adv Sci. 2019;6:1900023.

    Article  CAS  Google Scholar 

  58. Wang W, Liu N, Xin L, Ruan Y, Du X, Bai R, et al. Inhibition of miR-296-5p protects the heart from cardiac hypertrophy by targeting CACNG6. Gene Ther. 2019; e-pub ahead of print 16 December 2019; https://doi.org/10.1038/s41434-019-0109-0.

  59. Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, et al. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics. 2018;8:2565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Cui X, Wang Y, Fu Y, Guo X, Long J, et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 2018;233:6344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu XJ, Huang YQ, Shan ZX, Zhu JN, Hu ZQ, Huang L, et al. MicroRNA-92b-3p suppresses angiotensin II-induced cardiomyocyte hypertrophy via targeting HAND2. Life Sci. 2019;232:116635.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Cai H, Li H, Gao Z, Song K. Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell. 2018;31:251–60.

    Article  CAS  PubMed  Google Scholar 

  63. Tan L, Liu L, Jiang Z, Hao X. Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis. J Pharmacol Sci. 2019;139:280–8.

    Article  CAS  PubMed  Google Scholar 

  64. Huang R, Hu Z, Cao Y, Li H, Zhang H, Su W, et al. MiR-652-3p inhibition enhances endothelial repair and reduces atherosclerosis by promoting Cyclin D2 expression. EBioMedicine. 2019;40:685–94.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Su G, Sun G, Liu H, Shu L, Liang Z. Downregulation of miR-34a promotes endothelial cell growth and suppresses apoptosis in atherosclerosis by regulating Bcl-2. Heart Vessels. 2018;33:1185–94.

    Article  PubMed  Google Scholar 

  66. Kong B, Qin Z, Ye Z, Yang X, Li L, Su Q. microRNA-26a-5p affects myocardial injury induced by coronary microembolization by modulating HMGA1. J Cell Biochem. 2019;120:10756–66.

    Article  CAS  PubMed  Google Scholar 

  67. Su Q, Lv X, Ye Z, Sun Y, Kong B, Qin Z, et al. The mechanism of miR-142-3p in coronary microembolization-induced myocardiac injury via regulating target gene IRAK-1. Cell Death Dis. 2019;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang F, Chen Q, He S, Yang M, Maguire EM, An W, et al. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation. 2018;137:1824–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang ZP, Wang DZ. miR-22 in smooth muscle cells: a potential therapy for cardiovascular disease. Circulation. 2018;137:1842–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shen L, Song Y, Fu Y, Li P. MiR-29b mimics promotes cell apoptosis of smooth muscle cells via targeting on MMP-2. Cytotechnology. 2018;70:351–9.

    Article  CAS  PubMed  Google Scholar 

  71. Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, et al. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res. 2019;125:1106–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, et al. miR-29b contributes to multiple types of muscle atrophy. Nat Commun. 2017;8:15201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li J, Wang L, Hua X, Tang H, Chen R, Yang T, et al. CRISPR/Cas9 mediated miR-29b editing as a treatment of different types of muscle atrophy in mice. Mol Ther. 2020; e-pub ahead of print 10 March 2020; https://doi.org/10.1016/j.ymthe.2020.03.005.

  74. Hou J, Wang L, Wu Q, Zheng G, Long H, Wu H, et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther. 2018;9:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K, et al. A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res. 2018;123:1298–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cui C, Wang X, Shang XM, Li L, Ma Y, Zhao GY, et al. lncRNA 430945 promotes the proliferation and migration of vascular smooth muscle cells via the ROR2/RhoA signaling pathway in atherosclerosis. Mol Med Rep. 2019;19:4663–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Meng XD, Yao HH, Wang LM, Yu M, Shi S, Yuan ZX, et al. Knockdown of GAS5 inhibits atherosclerosis progression via reducing EZH2-mediated ABCA1 transcription in ApoE(−/−) mice. Mol Ther Nucleic Acids. 2019;19:84–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hao K, Lei W, Wu H, Wu J, Yang Z, Yan S, et al. LncRNA-safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction. Theranostics. 2019;9:7282–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, et al. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 2018;25:511–23.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22:1131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Wang J, Sun L, Zhu S. LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol. 2018;818:508–17.

    Article  CAS  PubMed  Google Scholar 

  82. Wo Y, Guo J, Li P, Yang H, Wo J. Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol. 2018;35:29–36.

    Article  PubMed  CAS  Google Scholar 

  83. Guo M, Liu T, Zhang S, Yang L. RASSF1-AS1, an antisense lncRNA of RASSF1A, inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice. Cell Biol Int. 2019;43:1163–73.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang S, Gao S, Wang Y, Jin P, Lu F. lncRNA SRA1 promotes the activation of cardiac myofibroblasts through negative regulation of miR-148b. DNA Cell Biol. 2019;38:385–94.

    Article  PubMed  CAS  Google Scholar 

  85. Yuan S, Liang J, Zhang M, Zhu J, Pan R, Li H. et al. [CircRNA_005647 inhibits expressions of fibrosis-related genes in mouse cardiac fibroblasts via sponging miR-27b-3p]. Nan Fang Yi Ke Da Xue Xue Bao. 2019;39:1312–19.

    PubMed  Google Scholar 

  86. Wu J, Zhou Q, Niu Y, Chen J, Zhu Y, Ye S, et al. Aberrant expression of serum circANRIL and hsa_circ_0123996 in children with Kawasaki disease. J Clin Lab Anal. 2019;33:e22874.

    PubMed  PubMed Central  Google Scholar 

  87. Sun XH, Wang X, Zhang Y, Hui J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb Res. 2019;177:23–32.

    Article  CAS  PubMed  Google Scholar 

  88. Xiao C, Wang K, Xu Y, Hu H, Zhang N, Wang Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res. 2018;123:564–78.

    Article  CAS  PubMed  Google Scholar 

  89. He JG, Li HR, Han JX, Li BB, Yan D, Li HY, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep. 2018;8:9047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, et al. Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med. 2018;41:3063–72.

    CAS  PubMed  Google Scholar 

  91. Yue Z, Chen J, Lian H, Pei J, Li Y, Chen X, et al. PDGFR-beta signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell Rep. 2019;28:966–78,e4.

    Article  CAS  PubMed  Google Scholar 

  92. Liu X, Chen J, Zhang B, Liu G, Zhao H, Hu Q. KDM3A inhibition modulates macrophage polarization to aggravate post-MI injuries and accelerates adverse ventricular remodeling via an IRF4 signaling pathway. Cell Signal. 2019;64:109415.

    Article  CAS  PubMed  Google Scholar 

  93. Xie B, Liu X, Yang J, Cheng J, Gu J, Xue S. PIAS1 protects against myocardial ischemia-reperfusion injury by stimulating PPARgamma SUMOylation. BMC Cell Biol. 2018;19:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu S, Xu Y, Yin M, Zhang S, Liu P, Koroleva M, et al. Flow-dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics. 2018;8:3007–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jia S, Yang S, Du P, Gao K, Cao Y, Yao B, et al. Regulatory factor X1 downregulation contributes to monocyte chemoattractant protein-1 overexpression in CD14+ monocytes via epigenetic mechanisms in coronary heart disease. Front Genet. 2019;10:1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin Y, Liu H, Klein M, Ostrominski J, Hong SG, Yada RC, et al. Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci Rep. 2018;8:5907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (81722008 and 81911540486 to JX, 81700761 to JD), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JX), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JX), National Key Research and Development Project (2018YFE0113500 to JX), and the “Dawn” Program of Shanghai Education Commission (19SG34 to JX). Due to the limited layout, many excellent researches have not been included, but thanks for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Guo, M., Li, G. et al. Gene therapy for cardiovascular diseases in China: basic research. Gene Ther 27, 360–369 (2020). https://doi.org/10.1038/s41434-020-0148-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0148-6

This article is cited by

Search

Quick links