Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats

Abstract

There is no definitive conclusion concerning the spread of viral vectors to the brain after a cochlear inoculation. In addition, some studies have reported different distribution profiles of viral vectors in the central auditory system after a cochlear inoculation. Thus, rats were grouped into either a mimetic aging group or a young group and transfected with adenoviral vectors (AdVs) by round window membrane injection. The distribution of AdV in central nervous system (CNS) was demonstrated in the two groups with transmission electron microscopy and immunofluorescence. We found that the AdV could disseminate into the CNS and that the neuronal damage and stress-induced GRP78 expression were reduced after transfection with PGC-1α, as compared with the control vectors, especially in the mimetic aging group. We also found that the host immune response was degraded in CNS in the mimetic aging group after transduction through the cochlea, as compared with the young group. These results demonstrate that viral vectors can disseminate into the CNS through the cochlea. Moreover, mimetic aging induced by D-galactose could facilitate the spread of viral vectors into the CNS from the cochlea. These findings may indicate a new potential approach for gene therapy against age-related diseases in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Harman D . Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300.

    Article  CAS  Google Scholar 

  2. Zeng LL, Yang Y, Hu YJ, Sun Y, Du ZD, Xie Z et al. Age-related decrease in the mitochondrial Sirtuin Deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model. PLos One 2014; 9: e88019.

    Article  Google Scholar 

  3. Golding M, Taylor A, Cupples L, Mitchell P . Odds of demonstrating auditory processing abnormality in the average older adult: the blue mountains hearing study. Ear Hear 2006; 27: 129–138.

    Article  Google Scholar 

  4. Schuknecht HF, Gacek MR . Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 1993; 102: 1–16.

    Article  CAS  Google Scholar 

  5. Schuknecht H . Further observations on the pathology of presbycusis. Arch Otolaryngol 1964; 80: 369–382.

    Article  CAS  Google Scholar 

  6. Sprinzl GM, Riechelmann H . Current trends in treating hearing loss in elderly people: a review of the technology and treatment options - a mini-review. Gerontology 2010; 56: 351–358.

    Article  CAS  Google Scholar 

  7. Pfaffenbach KT, Lee AS . The critical role of GRP78 in physiologic and pathologic stress. Curr Opin Cell Biol 2011; 23: 150–156.

    Article  CAS  Google Scholar 

  8. Walter P, Ron D . The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.

    Article  CAS  Google Scholar 

  9. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M . PGC-1 alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 2005; 66: 562–573.

    Article  CAS  Google Scholar 

  10. Zhao XY, Sun JL, Hu YJ, Yang Y, Zhang WJ, Hu Y et al. The effect of overexpression of PGC-1 alpha on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res 2013; 296: 13–24.

    Article  CAS  Google Scholar 

  11. Lustig LR, Akil O . Cochlear gene therapy. Curr Opin Neurol 2012; 25: 57–60.

    Article  CAS  Google Scholar 

  12. Agrup C, Gleeson M, Rudge P . The inner ear and the neurologist. J Neurol Neurosurg Psychiatry 2007; 78: 114–122.

    Article  Google Scholar 

  13. Lesinski SG, Prewitt J, Bray V, Aravamudhan R, Bermeo Blanco OA, Farmer-Fedor BL et al. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani. Otol Neurotol 2014; 35: 730–738.

    Article  Google Scholar 

  14. Wei Y, Fu Y, Liu SS, Xia GH, Pan S . Effect of lentiviruses carrying enhanced green fluorescent protein injected into the scala media through a cochleostomy in rats. Am J Otolaryngol 2013; 34: 301–307.

    Article  CAS  Google Scholar 

  15. Wang YF, Sun Y, Chang Q, Ahmad S, Zhou BF, Kim YJ et al. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 2013; 15: 123–133.

    Article  CAS  Google Scholar 

  16. Gassner D, Durham D, Pfannenstiel SC, Brough DE, Staecker H . Canalostomy as a surgical approach for cochlear gene therapy in the rat. Anat Rec 2012; 295: 1830–1836.

    Article  CAS  Google Scholar 

  17. Xia L, Yin SK, Wang J . Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches. PLos One 2012; 7: e43218.

    Article  CAS  Google Scholar 

  18. Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, Jero J . HOX-GFP and WOX-GFP lentivirus vectors for inner ear gene transfer. Acta Otolaryngol 2008; 128: 613–620.

    Article  CAS  Google Scholar 

  19. Qi W, Ding D, Zhu H, Lu D, Wang Y, Ding J et al. Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther 2014; 21: 10–18.

    Article  CAS  Google Scholar 

  20. Maeda Y, Fukushima K, Kawasaki A, Nishizaki K, Smith RJH . Cochlear expression of a dominant-negative GJB2(R75W) construct delivered through the round window membrane in mice. Neurosci Res 2007; 58: 250–254.

    Article  CAS  Google Scholar 

  21. Wang H, Murphy R, Taaffe D, Yin S, Xia L, Hauswirth WW et al. Efficient cochlear gene transfection in guinea-pigs with adeno-associated viral vectors by partial digestion of round window membrane. Gene Ther 2012; 19: 255–263.

    Article  CAS  Google Scholar 

  22. Zeier Z, Aguilar JS, Lopez CM, Devi-Rao GB, Watson ZL, Baker HV et al. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system. J Neurovirol 2009; 15: 411–424.

    Article  CAS  Google Scholar 

  23. Revilla S, Ursulet S, Alvarez-Lopez MJ, Castro-Freire M, Perpina U, Garcia-Mesa Y et al. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD Mice and MC65 Cells. CNS Neurosci Ther 2014; 13: 12312.

    Google Scholar 

  24. Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO . Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014; 27: 27.

    Google Scholar 

  25. Nishida F, Morel GR, Herenu CB, Schwerdt JI, Goya RG, Portiansky EL . Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats. Neuroscience 2011; 177: 195–206.

    Article  CAS  Google Scholar 

  26. Gray SJ, Kalburgi SN, McCown TJ, Samulski RJ . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013; 20: 450–459.

    Article  CAS  Google Scholar 

  27. Scallan CD, Jiang HY, Liu TY, Patarroyo-White S, Sommer JM, Zhou SZ et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810–1817.

    Article  CAS  Google Scholar 

  28. Tian J, Xu ZL, Smith JS, Hofherr SE, Barry MA, Byrnes AP . Adenovirus activates complement by distinctly different mechanisms in vitro and in vivo: indirect complement activation by virions in vivo. J Virol 2009; 83: 5648–5658.

    Article  CAS  Google Scholar 

  29. Lalwani AK, Han JJ, Walsh BJ, Zolotukhin S, Muzyczka N, Mhatre AN . Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res 1997; 114: 139–147.

    Article  CAS  Google Scholar 

  30. Kho ST, Pettis RM, Mhatre AN, Lalwani AK . Safety of adeno-associated virus as cochlear gene transfer vector: analysis of distant spread beyond injected cochleae. Mol Ther 2000; 2: 368–373.

    Article  CAS  Google Scholar 

  31. Duan ML, Mi Q . Local delivery of reporter gene to the cochlea does not spread to brain tissue in an animal model. Acta Otolaryngol 2010; 130: 25–30.

    Article  CAS  Google Scholar 

  32. Stover T, Yagi M, Raphael Y . Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer. Gene Ther 2000; 7: 377–383.

    Article  CAS  Google Scholar 

  33. Nam SM, Chung TH, Kim JW, Jung HY, Yim HS, Kim DW et al. Comparison of N-methyl-D-aspartate receptor subunit 1 and 4-hydroxynonenal in the hippocampus of natural and chemical-induced aging accelerated mice. Neurochem Res 2014; 15: 15.

    Google Scholar 

  34. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH . Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 2014; 27: 22–26.

    Article  CAS  Google Scholar 

  35. Kong WJ, Wang Y, Wang Q, Hu YJ, Han YC, Liu J . The relation between D-galactose injection and mitochondrial DNA 4834bp deletion mutation. Exp Gerontol 2006; 41: 628–634.

    Article  CAS  Google Scholar 

  36. Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C et al. Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. Age 2013; 35: 1607–1620.

    Article  CAS  Google Scholar 

  37. Cui X, Zuo PP, Zhang Q, Li XK, Hu YH, Long JG et al. Chronic systemic D-galactose exposure induces memory loss, neuro degeneration, and oxidative damage in mice: Protective effects of R-alpha-lipoic acid. J Neurosci Res 2006; 84: 647–654.

    Article  CAS  Google Scholar 

  38. Chen B, Zhong Y, Peng W, Sun Y, Kong WJ . Age-related changes in the central auditory system: comparison of D-galactose-induced aging rats and naturally aging rats. Brain Res 2010; 1344: 43–53.

    Article  CAS  Google Scholar 

  39. Kong WJ, Hu YJ, Wang QO, Wang Y, Han YC, Cheng HM et al. The effect of the mtDNA4834 deletion on hearing. Biochem Biophys Res Commun 2006; 344: 425–430.

    Article  CAS  Google Scholar 

  40. Swenson ES, Price JG, Brazelton T, Krause DS . Limitations of green fluorescent protein as a cell lineage marker. Stem Cells 2007; 25: 2593–2600.

    Article  CAS  Google Scholar 

  41. Kim DY, Mitchell MA, Bauer RW, Poston R, Cho DY . An outbreak of adenoviral infection in inland bearded dragons (Pogona vitticeps) coinfected with dependovirus and coccidial protozoa (Isospora sp.). J Vet Diagn Invest 2002; 14: 332–334.

    Article  Google Scholar 

  42. Fan GR, Yin ZD, Sun Y, Chen S, Zhang WJ, Huang X et al. Reversible neurotoxicity of kanamycin on dorsal cochlear nucleus. Brain Res 2013; 1502: 30–46.

    Article  CAS  Google Scholar 

  43. Khalique T, Hasan SA, Hasan M . Central auditory toxicity of sisomicin in guineapigs. Indian J Med Res 1991; 94: 156–160.

    CAS  PubMed  Google Scholar 

  44. Turner JG, Hughes LF, Caspary DM . Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. J Neurophysiol 2005; 94: 2738–2747.

    Article  Google Scholar 

  45. Oertel D, Young ED . What's a cerebellar circuit doing in the auditory system? Trends Neurosci 2004; 27: 104–110.

    Article  CAS  Google Scholar 

  46. Games KD, Winer JA . Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 1988; 34: 1–25.

    Article  CAS  Google Scholar 

  47. Bilak MM, Bilak SR, Morest DK . Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience 1996; 75: 1075–1097.

    Article  CAS  Google Scholar 

  48. Brostrom CO, Brostrom MA . Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 1998; 58: 79–125.

    Article  CAS  Google Scholar 

  49. Hotamisligil GS . Endoplasmic reticulum stress and atherosclerosis. Nat Med 2010; 16: 396–399.

    Article  CAS  Google Scholar 

  50. Hotamisligil GS . Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900–917.

    Article  CAS  Google Scholar 

  51. Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T . Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 1995; 5: 635–642.

    Article  CAS  Google Scholar 

  52. Niswender KD, Blackman SM, Rohde L, Magnuson MA, Piston DW . Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc 1995; 180: 109–116.

    Article  CAS  Google Scholar 

  53. Benson RC, Meyer RA, Zaruba ME, McKhann GM . Cellular autofluorescence—is it due to flavins? J Histochem Cytochem 1979; 27: 44–48.

    Article  CAS  Google Scholar 

  54. Hildebrand MS, Newton SS, Gubbels SP, Sheffield AM, Kochhar A, de Silva MG et al. Advances in molecular and cellular therapies for hearing loss. Mol Ther 2008; 16: 224–236.

    Article  CAS  Google Scholar 

  55. Manno CS, Arruda VR, Pierce GF, Glader B, Ragni M, Rasko J et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  Google Scholar 

  56. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  Google Scholar 

  57. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  Google Scholar 

  58. Raphael Y, Frisancho JC, Roessler BJ . Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 1996; 207: 137–141.

    Article  CAS  Google Scholar 

  59. Broberg EK, Hukkanen V . Immune response to herpes simplex virus and gamma134.5 deleted HSV vectors. Curr Gene Ther 2005; 5: 523–530.

    Article  CAS  Google Scholar 

  60. Lei H, Wang B, Li WP, Yang Y, Zhou AW, Chen MZ . Anti-aging effect of astragalosides and its mechanism of action. Acta Pharmacol Sin 2003; 24: 230–234.

    CAS  PubMed  Google Scholar 

  61. Djikic J, Nacka-Aleksic M, Pilipovic I, Stojic-Vukanic Z, Bufan B, Kosec D et al. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58C: 179–197.

    Article  Google Scholar 

  62. Guan J, Skinner SJ, Beilharz EJ, Hua KM, Hodgkinson S, Gluckman PD et al. The movement of IGF-I into the brain parenchyma after hypoxic-ischaemic injury. Neuroreport 1996; 7: 632–636.

    Article  CAS  Google Scholar 

  63. Lin DW, Trune DR . Breakdown of stria vascularis blood-labyrinth barrier in C3H/lpr autoimmune disease mice. Otolaryngol Head Neck Surg 1997; 117: 530–534.

    Article  CAS  Google Scholar 

  64. Wu ZD, Puigserver P, Andersson U, Zhang CY, Adelmant G, Mootha V et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98: 115–124.

    Article  CAS  Google Scholar 

  65. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127: 397–408.

    Article  CAS  Google Scholar 

  66. Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M et al. Activation of AMP-activated protein kinase reduces hyperglycemia-Induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 2006; 55: 120–127.

    Article  CAS  Google Scholar 

  67. Chen B, Zhong Y, Peng W, Sun Y, Hu YJ, Yang Y et al. Increased mitochondrial DNA damage and decreased base excision repair in the auditory cortex of d-galactose-induced aging rats. Mol Biol Rep 2011; 38: 3635–3642.

    Article  CAS  Google Scholar 

  68. Ladrech S, Guitton M, Saido T, Lenoir M . Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 2004; 477: 149–160.

    Article  CAS  Google Scholar 

  69. Stover T, Yagi M, Raphael Y . Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999; 136: 124–130.

    Article  CAS  Google Scholar 

  70. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 5th edn. Elsevier Academic Press: San Diego, USA, 2005.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Major State Basic Research Development Program of China (973 Program; No. 2011CB504504), National Nature Science Foundation of China (No. 81230021 and No. 81000409) and International S&T Cooperation Program of China (No. 2013DFE33160). We thank Baoping Chen and Senlin Lei for the help of transmission electronic microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Kong or W Kong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, X., Hu, Y. et al. The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats. Gene Ther 22, 866–875 (2015). https://doi.org/10.1038/gt.2015.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.63

Search

Quick links