Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Local delivery of the Neuregulin1 receptor ecto-domain (ecto-ErbB4) has a positive effect on regenerated nerve fiber maturation

Abstract

The Neuregulin/ErbB system plays an important role in the peripheral nervous system, under both normal and pathological conditions. We previously demonstrated that expression of soluble ecto-ErbB4, the released extracellular fragment of the ErbB4 receptor, stimulated glial cell migration in vitro. In this study we examined the possibility of manipulating this system in vivo in order to improve injured peripheral nerve regeneration. Transected rat median nerves of adult female Wistar rats were repaired with a 10-mm-long graft made by muscle-in-vein combined nerve guide previously transduced with either the adeno-associated viral (AAV) vector AAV2-LacZ or AAV2-ecto-ErbB4. Autologous nerve grafts were used as control. Both stereological and functional analyses were performed to assess nerve regeneration. Data show that delivery of soluble ecto-ErbB4 by gene transfer in the muscle-in-vein combined nerve guide has a positive effect on fiber maturation, suggesting that it could represent a potential tool for improving peripheral nerve regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Geuna S, Raimondo S, Ronchi G, Di Scipio F, Tos P, Czaja K et al. Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 2009; 87: 27–46.

    Article  Google Scholar 

  2. Tamaki H, Tomori K, Yotani K, Ogita F, Sugawara K, Kirimto H et al. Electrical stimulation of denervated rat skeletal muscle retards trabecular bone loss in early stages of disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 2014; 14: 220–228.

    CAS  PubMed  Google Scholar 

  3. Deumens R, Bozkurt A, Meek MF, Marcus MA, Joosten EA, Weis J et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 2010; 92: 245–276.

    Article  Google Scholar 

  4. Brunelli GA, Battiston B, Vigasio A, Brunelli G, Marocolo D . Bridging nerve defects with combined skeletal muscle and vein conduits. Microsurgery 1993; 14: 247–251.

    Article  CAS  Google Scholar 

  5. Battiston B, Tos P, Cushway TR, Geuna S . Nerve repair by means of vein filled with muscle grafts I. Clinical results. Microsurgery 2000; 20: 32–36.

    Article  CAS  Google Scholar 

  6. Fornaro M, Tos P, Geuna S, Giacobini-Robecchi MG, Battiston B . Confocal imaging of Schwann-cell migration along muscle-vein combined grafts used to bridge nerve defects in the rat. Microsurgery 2001; 21: 153–155.

    Article  CAS  Google Scholar 

  7. Raimondo S, Nicolino S, Tos P, Battiston B, Giacobini-Robecchi MG, Perroteau I et al. Schwann cell behavior after nerve repair by means of tissue-engineered muscle-vein combined guides. J Comp Neurol 2005; 489: 249–259.

    Article  Google Scholar 

  8. Tos P, Battiston B, Ciclamini D, Geuna S, Artiaco S . Primary repair of crush nerve injuries by means of biological tubulization with muscle-vein-combined grafts. Microsurgery 2012; 32: 358–363.

    Article  Google Scholar 

  9. Battiston B, Geuna S, Ferrero M, Tos P . Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 2005; 25: 258–267.

    Article  Google Scholar 

  10. Marcoccio I, Vigasio A . Muscle-in-vein nerve guide for secondary reconstruction in digital nerve lesions. J Hand Surg Am 2010; 35: 1418–1426.

    Article  Google Scholar 

  11. Manoli T, Schulz L, Stahl S, Jaminet P, Schaller HE . Evaluation of sensory recovery after reconstruction of digital nerves of the hand using muscle-in-vein conduits in comparison to nerve suture or nerve autografting. Microsurgery 2014; 34: 608–615.

    Article  Google Scholar 

  12. Gordon T, Sulaiman O, Boyd JG . Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst 2003; 8: 236–250.

    Article  Google Scholar 

  13. Shieh SJ, Lee JW, Chiu HY . Long-term functional results of primary reconstruction of severe forearm injuries. J Plast Reconstr Aesthet Surg 2007; 60: 339–348.

    Article  Google Scholar 

  14. Allodi I, Mecollari V, Gonzalez-Perez F, Eggers R, Hoyng S, Verhaagen J et al. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014; 62: 1736–1746.

    Article  Google Scholar 

  15. Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 2004; 10: 844–854.

    Article  CAS  Google Scholar 

  16. Homs J, Ariza L, Pages G, Udina E, Navarro X, Chillon M et al. Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Therapy 2011; 18: 622–630.

    Article  CAS  Google Scholar 

  17. Moimas S, Novati F, Ronchi G, Zacchigna S, Fregnan F, Zentilin L et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Therapy 2013; 20: 1014–1021.

    Article  CAS  Google Scholar 

  18. Fricker FR, Bennett DL . The role of neuregulin-1 in the response to nerve injury. Future Neurol 2011; 6: 809–822.

    Article  CAS  Google Scholar 

  19. Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N et al. Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 2011; 31: 3225–3233.

    Article  CAS  Google Scholar 

  20. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005; 47: 681–694.

    Article  CAS  Google Scholar 

  21. Taveggia C, Feltri ML, Wrabetz L . Signals to promote myelin formation and repair. Nat Rev Neurol 2010; 6: 276–287.

    Article  Google Scholar 

  22. Ronchi G, Gambarotta G, Di Scipio F, Salamone P, Sprio AE, Cavallo F et al. ErbB2 receptor over-expression improves post-traumatic peripheral nerve regeneration in adult mice. PLoS One 2013; 8: e56282.

    Article  CAS  Google Scholar 

  23. Gambarotta G, Fregnan F, Gnavi S, Perroteau I . Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 2013; 108: 223–256.

    Article  CAS  Google Scholar 

  24. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K . Function of ERBB4 is determined by alternative splicing. Cell Cycle 2011; 10: 2647–2657.

    Article  CAS  Google Scholar 

  25. Pascal D, Giovannelli A, Gnavi S, Hoyng SA, de Winter F, Morano M et al. Characterization of Glial Cell Models and In Vitro Manipulation of the Neuregulin1/ErbB System. Biomed Res Int 2014; 2014: 310215.

    Article  Google Scholar 

  26. Canetta SE, Luca E, Pertot E, Role LW, Talmage DA . Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation. PLoS One 2011; 6: e25108.

    Article  CAS  Google Scholar 

  27. Aydin MA, Mackinnon SE, Gu XM, Kobayashi J, Kuzon WM Jr . Force deficits in skeletal muscle after delayed reinnervation. Plast Reconstr Surg 2004; 113: 1712–1718.

    Article  Google Scholar 

  28. Maki Y . Specificity in peripheral nerve regeneration: a discussion of the issues and the research. J Orthop Sci 2002; 7: 594–600.

    Article  Google Scholar 

  29. Garratt AN, Britsch S, Birchmeier C . Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 2000; 22: 987–996.

    Article  CAS  Google Scholar 

  30. Tos P, Battiston B, Nicolino S, Raimondo S, Fornaro M, Lee JM et al. Comparison of fresh and predegenerated muscle-vein-combined guides for the repair of rat median nerve. Microsurgery 2007; 27: 48–55.

    Article  CAS  Google Scholar 

  31. Munro CA, Szalai JP, Mackinnon SE, Midha R . Lack of association between outcome measures of nerve regeneration. Muscle Nerve 1998; 21: 1095–1097.

    Article  CAS  Google Scholar 

  32. Wolthers M, Moldovan M, Binderup T, Schmalbruch H, Krarup C . Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery 2005; 25: 508–519.

    Article  CAS  Google Scholar 

  33. Bao J, Lin H, Ouyang Y, Lei D, Osman A, Kim TW et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 2004; 7: 1250–1258.

    Article  CAS  Google Scholar 

  34. Bao J, Wolpowitz D, Role LW, Talmage DA . Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003; 161: 1133–1141.

    Article  CAS  Google Scholar 

  35. Hoyng SA, Gnavi S, de Winter F, Eggers R, Ozawa T, Zaldumbide A et al. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Therapy 2014; 21: 549–557.

    Article  CAS  Google Scholar 

  36. Shakhbazau A, Mohanty C, Shcharbin D, Bryszewska M, Caminade AM, Majoral JP et al. Doxycycline-regulated GDNF expression promotes axonal regeneration and functional recovery in transected peripheral nerve. J Control Release 2013; 172: 841–851.

    Article  CAS  Google Scholar 

  37. Nicolino S, Raimondo S, Tos P, Battiston B, Fornaro M, Geuna S et al. Expression of alpha2a-2b neuregulin-1 is associated with early peripheral nerve repair along muscle-enriched tubes. Neuroreport 2003; 14: 1541–1545.

    Article  CAS  Google Scholar 

  38. Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D et al. A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 2013; 16: 48–54.

    Article  CAS  Google Scholar 

  39. Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL . Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 2009; 57: 1501–1520.

    Article  Google Scholar 

  40. Syed N, Kim HA . Soluble Neuregulin and Schwann Cell Myelination: a Therapeutic Potential for Improving Remyelination of Adult Axons. Mol Cell Pharmacol 2010; 2: 161–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoyng SA, De Winter F, Gnavi S, de Boer R, Boon LI, Korvers LM et al. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol 2014; 261C: 578–593.

    Article  Google Scholar 

  42. Goodman MN, Silver J, Jacobberger JW . Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Res 1993; 619: 199–213.

    Article  CAS  Google Scholar 

  43. Maier O, Bohm J, Dahm M, Bruck S, Beyer C, Johann S . Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration. Neurochem Int 2013; 62: 1029–1038.

    Article  CAS  Google Scholar 

  44. Fregnan F, Petrov V, Garzotto D, De Marchis S, Offenhauser N, Grosso E et al. Eps8 involvement in neuregulin1-ErbB4 mediated migration in the neuronal progenitor cell line ST14A. Exp Cell Res 2011; 317: 757–769.

    Article  CAS  Google Scholar 

  45. Gambarotta G, Garzotto D, Destro E, Mautino B, Giampietro C, Cutrupi S et al. ErbB4 expression in neural progenitor cells (ST14A) is necessary to mediate neuregulin-1beta1-induced migration. J Biol Chem 2004; 279: 48808–48816.

    Article  CAS  Google Scholar 

  46. Papalia I, Tos P, Stagno d'Alcontres F, Battiston B, Geuna S . On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods 2003; 127: 43–47.

    Article  Google Scholar 

  47. Larsen JO . Stereology of nerve cross sections. J Neurosci Methods 1998; 85: 107–118.

    Article  CAS  Google Scholar 

  48. Geuna S, Tos P, Battiston B, Guglielmone R . Verification of the two-dimensional disector, a method for the unbiased estimation of density and number of myelinated nerve fibers in peripheral nerves. Ann Anat 2000; 182: 23–34.

    Article  CAS  Google Scholar 

  49. Piskin A, Kaplan S, Aktas A, Ayyildiz M, Raimondo S, Alic T et al. Platelet gel does not improve peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study. Microsurgery 2009; 29: 144–153.

    Article  Google Scholar 

  50. Schmitz C . Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371–397.

    Article  CAS  Google Scholar 

  51. Schmitz C . Variation of fractionator estimates and its prediction. Anat Embryol (Berl) 1998; 198: 371–397.

    Article  CAS  Google Scholar 

  52. Geuna S, Tos P, Guglielmone R, Battiston B, Giacobini-Robecchi MG . Methodological issues in size estimation of myelinated nerve fibers in peripheral nerves. Anat Embryol (Berl) 2001; 204: 1–10.

    Article  CAS  Google Scholar 

  53. Pakkenberg B, Gundersen HJ . Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 1997; 384: 312–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Community's Seventh Framework Programme (FP7-HEALTH-2011) under grant agreement no. 278612 (BIOHYBRID) and by grants from Compagnia di San Paolo (MOVAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gambarotta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambarotta, G., Pascal, D., Ronchi, G. et al. Local delivery of the Neuregulin1 receptor ecto-domain (ecto-ErbB4) has a positive effect on regenerated nerve fiber maturation. Gene Ther 22, 901–907 (2015). https://doi.org/10.1038/gt.2015.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.46

Search

Quick links