Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Improved retroviral episome transfer of transcription factors enables sustained cell fate modification

Abstract

Retroviral vectors are versatile gene transfer vehicles widely used in basic research and gene therapy. Mutation of retroviral integrase converts these vectors into transient, integration-deficient gene delivery vehicles associated with a high degree of biosafety. We explored the option to use integration-deficient retroviral vectors to achieve transient ectopic expression of transcription factors, which is considered an important tool for induced cell fate conversion. Stepwise optimization of the retroviral episome transfer as exemplified for the transcription factor Oct4 enabled to improve both expression magnitude and endurance. Long terminal repeat-driven γ-retroviral vectors were identified as the most suitable vector architecture. Episomal expression was enhanced by epigenetic modifiers, and Oct4 activity was increased following fusion to a minimal transactivation motif of herpes simplex virus VP16. Based on kinetic analyses, we identified optimal time intervals for repeated vector administration and established prolonged expression windows of choice. Providing proof-of-concept, episomal transfer of Oct4 was potent to mediate conversion of human fibroblasts stably expressing Klf4, Sox2 and c-Myc into induced pluripotent stem cells, which were mainly free of residual Oct4 vector integration. This study provides evidence for suitability of retroviral episome transfer of transcription factors for cell fate conversion, allowing the generation of distinct patient- or disease-specific cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z et al. Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 2008; 22: 1519–1528.

    Article  CAS  Google Scholar 

  2. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  Google Scholar 

  3. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  Google Scholar 

  4. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  Google Scholar 

  5. Wanisch K, Yanez-Munoz RJ . Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 2009; 17: 1316–1332.

    Article  CAS  Google Scholar 

  6. Yu SS, Dan K, Chono H, Chatani E, Mineno J, Kato I . Transient gene expression mediated by integrase-defective retroviral vectors. Biochem Biophys Res Commun 2008; 368: 942–947.

    Article  CAS  Google Scholar 

  7. Deyle DR, Li Y, Olson EM, Russell DW . Nonintegrating foamy virus vectors. J Virol 2010; 84: 9341–9349.

    Article  CAS  Google Scholar 

  8. Vargas Jr J, Gusella GL, Najfeld V, Klotman ME, Cara A . Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 2004; 15: 361–372.

    Article  CAS  Google Scholar 

  9. Banasik MB, McCray Jr PB . Integrase-defective lentiviral vectors: progress and applications. Gene Therapy 2010; 17: 150–157.

    Article  CAS  Google Scholar 

  10. Kholodenko BN, Hancock JF, Kolch W . Signalling ballet in space and time. Nat Rev Mol Cell Biol 2010; 11: 414–426.

    Article  CAS  Google Scholar 

  11. Graf T, Enver T . Forcing cells to change lineages. Nature 2009; 462: 587–594.

    Article  CAS  Google Scholar 

  12. Davis RL, Weintraub H, Lassar AB . Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51: 987–1000.

    Article  CAS  Google Scholar 

  13. Xie H, Ye M, Feng R, Graf T . Stepwise reprogramming of B cells into macrophages. Cell 2004; 117: 663–676.

    Article  CAS  Google Scholar 

  14. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  Google Scholar 

  16. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  Google Scholar 

  17. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R . A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 2008; 3: 346–353.

    Article  CAS  Google Scholar 

  18. Feng B, Ng JH, Heng JC, Ng HH . Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009; 4: 301–312.

    Article  CAS  Google Scholar 

  19. Niwa H, Miyazaki J, Smith AG . Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372–376.

    Article  CAS  Google Scholar 

  20. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA 2011; 108: 7838–7843.

    Article  CAS  Google Scholar 

  21. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012; 10: 473–479.

    Article  CAS  Google Scholar 

  22. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468: 521–526.

    Article  CAS  Google Scholar 

  23. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011; 13: 215–222.

    Article  CAS  Google Scholar 

  24. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy 2006; 13: 641–645.

    Article  CAS  Google Scholar 

  25. Schneider WM, Wu DT, Amin V, Aiyer S, Roth MJ, MuLV IN . mutants responsive to HDAC inhibitors enhance transcription from unintegrated retroviral DNA. Virology 2012; 426: 188–196.

    Article  CAS  Google Scholar 

  26. Pelascini LP, Janssen JM, Goncalves MA . Histone deacetylase inhibition activates transgene expression from integration-defective lentiviral vectors in dividing and non-dividing cells. Hum Gene Ther 2013; 24: 78–96.

    Article  CAS  Google Scholar 

  27. Berger SL, Pina B, Silverman N, Marcus GA, Agapite J, Regier JL et al. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 1992; 70: 251–265.

    Article  CAS  Google Scholar 

  28. Gilbert DM, Heery DM, Losson R, Chambon P, Lemoine Y . Estradiol-inducible squelching and cell growth arrest by a chimeric VP16-estrogen receptor expressed in Saccharomyces cerevisiae: suppression by an allele of PDR1. Mol Cell Biol 1993; 13: 462–472.

    Article  CAS  Google Scholar 

  29. Seipel K, Georgiev O, Schaffner W . Different activation domains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. EMBO J 1992; 11: 4961–4968.

    Article  CAS  Google Scholar 

  30. Baron U, Gossen M, Bujard H . Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res 1997; 25: 2723–2729.

    Article  CAS  Google Scholar 

  31. Saxe JP, Tomilin A, Scholer HR, Plath K, Huang J . Post-translational regulation of Oct4 transcriptional activity. PLoS One 2009; 4: e4467.

    Article  Google Scholar 

  32. Warlich E, Kuehle J, Cantz T, Brugman MH, Maetzig T, Galla M et al. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 2011; 19: 782–789.

    Article  CAS  Google Scholar 

  33. Hotta A, Ellis J . Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 2008; 105: 940–948.

    Article  CAS  Google Scholar 

  34. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007; 25: 803–816.

    Article  CAS  Google Scholar 

  35. Müller FJ, Schuldt BM, Williams R, Mason D, Altun G, Papapetrou EP et al. A bioinformatic assay for pluripotency in human cells. Nat Methods 2011; 8: 315–317.

    Article  Google Scholar 

  36. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    Article  CAS  Google Scholar 

  37. Ramos-Mejia V, Montes R, Bueno C, Ayllon V, Real PJ, Rodriguez R et al. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. PLoS One 2012; 7: e35824.

    Article  CAS  Google Scholar 

  38. Cronin J, Zhang XY, Reiser J . Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5: 387–398.

    Article  CAS  Google Scholar 

  39. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R et al. Targeted cell entry of lentiviral vectors. Mol Ther 2008; 16: 1427–1436.

    Article  CAS  Google Scholar 

  40. Anliker B, Abel T, Kneissl S, Hlavaty J, Caputi A, Brynza J et al. Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods 2010; 7: 929–935.

    Article  CAS  Google Scholar 

  41. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 797–801.

    Article  CAS  Google Scholar 

  42. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011; 8: 409–412.

    Article  CAS  Google Scholar 

  43. Zhou W, Freed CR . Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27: 2667–2674.

    Article  CAS  Google Scholar 

  44. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K . Induced pluripotent stem cells generated without viral integration. Science 2008; 322: 945–949.

    Article  CAS  Google Scholar 

  45. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M . Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B 2009; 85: 348–362.

    Article  CAS  Google Scholar 

  46. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7: 11–14.

    Article  CAS  Google Scholar 

  47. Tokusumi T, Iida A, Hirata T, Kato A, Nagai Y, Hasegawa M . Recombinant Sendai viruses expressing different levels of a foreign reporter gene. Virus Res 2002; 86: 33–38.

    Article  CAS  Google Scholar 

  48. Tiemann U, Sgodda M, Warlich E, Ballmaier M, Scholer HR, Schambach A et al. Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A 2011; 79: 426–435.

    Article  Google Scholar 

  49. Zhang Y, Li W, Laurent T, Ding S . Small molecules, big roles—the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 2012; 125: 5609–5620.

    Article  CAS  Google Scholar 

  50. Hirai H, Tani T, Kikyo N . Structure and functions of powerful transactivators: VP16, MyoD and FoxA. Int J Dev Biol 2010; 54: 1589–1596.

    Article  CAS  Google Scholar 

  51. Wang Y, Chen J, Hu JL, Wei XX, Qin D, Gao J et al. Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep 2011; 12: 373–378.

    Article  CAS  Google Scholar 

  52. Sterneckert J, Hoing S, Scholer HR . Concise review: Oct4 and more: the reprogramming expressway. Stem Cells 2012; 30: 15–21.

    Article  CAS  Google Scholar 

  53. Murnane JP, Yezzi MJ, Young BR . Recombination events during integration of transfected DNA into normal human cells. Nucleic Acids Res 1990; 18: 2733–2738.

    Article  CAS  Google Scholar 

  54. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S . Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322: 949–953.

    Article  CAS  Google Scholar 

  55. Jincho Y, Araki R, Hoki Y, Tamura C, Nakamura M, Ando S et al. Generation of genome integration-free induced pluripotent stem cells from fibroblasts of C57BL/6 mice without c-Myc transduction. J Biol Chem 2010; 285: 26384–26389.

    Article  CAS  Google Scholar 

  56. Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci USA 2009; 106: 8918–8922.

    Article  CAS  Google Scholar 

  57. Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 2008; 26: 1998–2005.

    Article  CAS  Google Scholar 

  58. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454: 646–650.

    Article  CAS  Google Scholar 

  59. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 2013; 502: 65–70.

    Article  CAS  Google Scholar 

  60. Schambach A, Bohne J, Chandra S, Will E, Margison GP, Williams DA et al. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. Mol Ther 2006; 13: 391–400.

    Article  CAS  Google Scholar 

  61. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Therapy 2006; 13: 1524–1533.

    Article  CAS  Google Scholar 

  62. Maetzig T, Galla M, Brugman MH, Loew R, Baum C, Schambach A . Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Therapy 2010; 17: 400–411.

    Article  CAS  Google Scholar 

  63. Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R et al. Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 2011; 22: 166–176.

    Article  CAS  Google Scholar 

  64. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010; 6: 71–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Academic Exchange Service (DAAD, Modern Application of Biotechnology), the Federal Ministry of Education and Research (BMBF, network projects ReGene and PidNet), the Deutsche Forschungsgemeinschaft (SPP1230, SFB738 and Cluster of Excellence REBIRTH) and the European Union (FP7 integrated projects CELL-PID and PERSIST). JWS was supported by the Hannover Biomedical Research School (HBRS; DFG, GSC 108) and the PhD program ‘Molecular Medicine’. We thank Nico Jäschke for experimental support and help with cytotoxicity assays, Michael Morgan for critical reading of the manuscript, Malte Sgodda for H9 hESC RNA (all Hannover Medical School, Hannover, Germany), Gerald Draeger for providing ROCK inhibitor Y-27632 and Thomas Scheper for basic fibroblast growth factor (both Leibniz University Hannover, Hannover, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schambach.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schott, J., Hoffmann, D., Maetzig, T. et al. Improved retroviral episome transfer of transcription factors enables sustained cell fate modification. Gene Ther 21, 938–949 (2014). https://doi.org/10.1038/gt.2014.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.69

This article is cited by

Search

Quick links