Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice

Subjects

Abstract

Antisense therapy with both chemistries of phosphorodiamidate morpholino oligomers (PMOs) and 2′-O-methyl phosphorothioate has demonstrated the capability to induce dystrophin expression in Duchenne muscular dystrophy (DMD) patients in phase II-III clinical trials with benefit in muscle functions. However, potential of the therapy for DMD at different stages of the disease progression is not understood. In this study, we examined the effect of peptide-conjugated PMO (PPMO)-mediated exon skipping on disease progression of utrophin-dystrophin-deficient mice (dko) of four age groups (21–29, 30–39, 40–49 and 50+ days), representing diseases from early stage to advanced stage with severe kyphosis. Biweekly intravenous (i.v.) administration of the PPMO restored the dystrophin expression in nearly 100% skeletal muscle fibers in all age groups. This was associated with the restoration of dystrophin-associated proteins including functional glycosylated dystroglycan and neuronal nitric synthase. However, therapeutic outcomes clearly depended on severity of the disease at the time the treatment started. The PPMO treatment alleviated the disease pathology and significantly prolonged the life span of the mice receiving treatment at younger age with mild phenotype. However, restoration of high levels of dystrophin expression failed to prevent disease progression to the mice receiving treatment when disease was already at advanced stage. The results could be critical for design of clinical trials with antisense therapy to DMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hoffman EP, Brown RH Jr, Kunkel LM . Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919–928.

    Article  CAS  Google Scholar 

  2. Konieczny P, Swiderski K, Chamberlain JS . Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47: 649–663.

    Article  CAS  Google Scholar 

  3. Sherratt TG, Vulliamy T, Dubowitz V, Sewry CA, Strong PN . Exon skipping and translation in patients with frameshift deletions in the dystrophin gene. Am J Hum Genet 1993; 53: 1007–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G . Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 1998; 7: 1083–1090.

    Article  CAS  Google Scholar 

  5. Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA 2001; 98: 42–47.

    Article  CAS  Google Scholar 

  6. Dickson G, Hill V, Graham IR . Screening for antisense modulation of dystrophin pre-mRNA splicing. Neuromuscul Disord 2002; 12 (Suppl 1): S67–S70.

    Article  Google Scholar 

  7. Aartsma-Rus A, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ, van Deutekom JC . Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 2002; 12 (Suppl 1): S71–S77.

    Article  Google Scholar 

  8. Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 2003; 9: 1009–1014.

    Article  CAS  Google Scholar 

  9. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 2005; 102: 198–203.

    Article  CAS  Google Scholar 

  10. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175–177.

    Article  CAS  Google Scholar 

  11. Abes R, Arzumanov AA, Moulton HM, Abes S, Ivanova GD, Iversen PL et al. Cell-penetrating-peptide-based delivery of oligonucleotides: an overview. Biochem Soc Trans 2007; 35: 775–779.

    Article  CAS  Google Scholar 

  12. Amantana A, Moulton HM, Cate ML, Reddy MT, Whitehead T, Hassinger JN et al. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjug Chem 2007; 18: 1325–1331.

    Article  CAS  Google Scholar 

  13. Wu B, Moulton HM, Iversen PL, Jiang J, Li J, Spurney CF et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 2008; 105: 14814–14819.

    Article  CAS  Google Scholar 

  14. Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 2008; 16: 1624–1629.

    Article  CAS  Google Scholar 

  15. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P et al. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 2008; 17: 3909–3918.

    Article  CAS  Google Scholar 

  16. Wu B, Li Y, Morcos PA, Doran TJ, Lu P, Lu QL . Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 2009; 17: 864–871.

    Article  CAS  Google Scholar 

  17. Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T et al. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52–deficient mdx mouse. Mol Ther 2010; 18: 1995–2005.

    Article  CAS  Google Scholar 

  18. Wu B, Lu P, Benrashid E, Malik S, Ashar J, Doran TJ et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. Gene Therapy 2010; 17: 132–140.

    Article  CAS  Google Scholar 

  19. Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009; 65: 667–676.

    Article  Google Scholar 

  20. Moulton HM, Moulton JD . Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 2010; 1798: 2296–2303.

    Article  CAS  Google Scholar 

  21. Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T et al. Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 2012; 109: 13763–13768.

    Article  CAS  Google Scholar 

  22. Wu B, Xiao B, Cloer C, Shaban M, Sali A, Lu P et al. One-year treatment of morpholino antisense oligomer improves skeletal and cardiac muscle functions in dystrophic mdx mice. Mol Ther 2011; 19: 576–583.

    Article  CAS  Google Scholar 

  23. Wu B, Lu P, Cloer C, Shaban M, Grewal S, Milazi S et al. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino. Am J Pathol 2012; 181: 392–400.

    Article  CAS  Google Scholar 

  24. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677–2686.

    Article  CAS  Google Scholar 

  25. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 8: 918–928.

    Article  CAS  Google Scholar 

  26. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 2011; 364: 1513–1522.

    Article  CAS  Google Scholar 

  27. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378: 595–605.

    Article  CAS  Google Scholar 

  28. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of Neurology 2013; 74: 637–647.

    Article  CAS  Google Scholar 

  29. Bulfield G, Siller WG, Wight PA, Moore KJ . X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 1984; 81: 1189–1192.

    Article  CAS  Google Scholar 

  30. Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997; 90: 717–727.

    Article  CAS  Google Scholar 

  31. Porter JD, Rafael JA, Ragusa RJ, Brueckner JK, Trickett JI, Davies KE . The sparing of extraocular muscle in dystrophinopathy is lost in mice lacking utrophin and dystrophin. J Cell Sci 1998; 111: 1801–1811.

    CAS  PubMed  Google Scholar 

  32. Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 2006; 12: 787–789.

    Article  CAS  Google Scholar 

  33. Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J et al. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Bio 2012; 197: 1009–1027.

    Article  CAS  Google Scholar 

  34. Laws N, Hoey A . Progression of kyphosis in mdx mice. J Appl Physiol 2004; 97: 1970–1977.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Carolinas Muscular Dystrophy Research Endowment at the Carolinas HealthCare Foundation and Carolinas Medical Center, Charlotte, NC, Foundation to Eradicate Duchenne, Department of Defense (W81XWH-09-1-0599), and NIH/NICHD (U54 HD 071601-02). We thank AVI Biopharma (now Sarepta Therapeutics) for the supply of PPMOE23 for this study and Dr Mark Grady (Washington University, St Louis) and Dr Joshua Sanes (Harvard University, Cambridge) for providing mdx female mice heterozygous for utrophin (mdx;utr+/−).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Wu or Q L Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Cloer, C., Lu, P. et al. Exon skipping restores dystrophin expression, but fails to prevent disease progression in later stage dystrophic dko mice. Gene Ther 21, 785–793 (2014). https://doi.org/10.1038/gt.2014.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.53

This article is cited by

Search

Quick links