Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Approximately 50% of AMD patients have a polymorphism in the negative regulator of complement known as Factor H. Individuals homozygous for a Y402H polymorphism in Factor H have elevated levels of membrane attack complex (MAC) in their choroid and retinal pigment epithelium relative to individuals homozygous for the wild-type allele. An inability to form MAC due to a polymorphism in C9 is protective against the formation of choroidal neovascularization (CNV) in AMD patients. Hence, blocking MAC in AMD patients may be protective against CNV. Here we investigate the potential of human proline/arginine-rich end leucine-rich repeat protein (PRELP) as an inhibitor of complement-mediated damage when delivered via the subretinal route using an AAV2/8 vector. In a fluorescence-activated cell sorting (FACS) lysis assay, PRELP inhibited normal human serum-mediated lysis of Hepa-1c1c7 cells by 18.7%. Unexpectedly, PRELP enhanced the formation of tubes by human umbilical vein endothelial cells (HUVECs) by approximately 240%, but, when delivered via an AAV vector to the retina of mice, PRELP inhibited laser-induced CNV by 60%. PRELP reduced deposition of MAC in vivo by 25.5%. Our results have implications for the development of complement inhibitors as a therapy for AMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY . Age-related macular degeneration. Lancet 2012; 379: 1728–1738.

    Article  Google Scholar 

  2. Bhutto I, Lutty G . Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med 2012; 33: 295–317.

    Article  CAS  Google Scholar 

  3. Mullins RF, Dewald AD, Streb LM, Wang K, Kuehn MH, Stone EM . Elevated membrane attack complex in human choroid with high risk complement factor H genotypes. Exp Eye Res 2011; 93: 565–567.

    Article  CAS  Google Scholar 

  4. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005; 308: 419–421.

    Article  CAS  Google Scholar 

  5. Davies A, Lachmann PJ . Membrane defence against complement lysis: the structure and biological properties of CD59. Immunol Res 1993; 12: 258–275.

    Article  CAS  Google Scholar 

  6. Kunchithapautham K, Bandyopadhyay M, Dahrouj M, Thurman JM, Rohrer B . Sublytic membrane-attack-complex activation and VEGF secretion in retinal pigment epithelial cells. Adv Exp Med Biol 2012; 723: 23–30.

    Article  CAS  Google Scholar 

  7. Halperin JA, Taratuska A, Nicholson-Weller A . Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Investig 1993; 91: 1974–1978.

    Article  CAS  Google Scholar 

  8. Kim DD, Song WC . Membrane complement regulatory proteins. Clin Immunol 2006; 118: 127–136.

    Article  CAS  Google Scholar 

  9. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT . Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. J Pathol 2013; 229: 729–742.

    Article  CAS  Google Scholar 

  10. Nishiguchi KM, Yasuma TR, Tomida D, Nakamura M, Ishikawa K, Kikuchi M et al. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2012; 53: 508–512.

    Article  CAS  Google Scholar 

  11. Clark SJ, Perveen R, Hakobyan S, Morgan BP, Sim RB, Bishop PN et al. Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch's membrane in human retina. J Biol Chem 2010; 285: 30192–30202.

    Article  CAS  Google Scholar 

  12. Bengtsson E, Neame PJ, Heinegard D, Sommarin Y . The primary structure of a basic leucine-rich repeat protein, PRELP, found in connective tissues. J Biol Chem 1995; 270: 25639–25644.

    Article  CAS  Google Scholar 

  13. Grover J, Chen XN, Korenberg JR, Recklies AD, Roughley PJ . The gene organization, chromosome location, and expression of a 55-kDa matrix protein (PRELP) of human articular cartilage. Genomics 1996; 38: 109–117.

    Article  CAS  Google Scholar 

  14. Happonen KE, Furst CM, Saxne T, Heinegard D, Blom AM . PRELP protein inhibits the formation of the complement membrane attack complex. J Biol Chem 2012; 287: 8092–8100.

    Article  CAS  Google Scholar 

  15. Heinegard D, Larsson T, Sommarin Y, Franzen A, Paulsson M, Hedbom E . Two novel matrix proteins isolated from articular cartilage show wide distributions among connective tissues. J Biol Chem 1986; 261: 13866–13872.

    CAS  PubMed  Google Scholar 

  16. Lewis M . PRELP, collagen, and a theory of Hutchinson-Gilford progeria. Ageing Res Rev 2003; 2: 95–105.

    Article  CAS  Google Scholar 

  17. Bengtsson E, Aspberg A, Heinegard D, Sommarin Y, Spillmann D . The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 2000; 275: 40695–40702.

    Article  CAS  Google Scholar 

  18. Bengtsson E, Morgelin M, Sasaki T, Timpl R, Heinegard D, Aspberg A . The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 2002; 277: 15061–15068.

    Article  CAS  Google Scholar 

  19. Tegla CA, Cudrici C, Patel S, Trippe 3rd R Rus V, Niculescu F et al. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2011; 51: 45–60.

    Article  CAS  Google Scholar 

  20. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM . Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 2007; 39: 1200–1201.

    Article  CAS  Google Scholar 

  21. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 2007; 357: 553–561.

    Article  CAS  Google Scholar 

  22. Grossniklaus HE, Kang SJ, Berglin L . Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 2010; 29: 500–519.

    Article  Google Scholar 

  23. Pennesi ME, Neuringer M, Courtney RJ . Animal models of age related macular degeneration. Mol Aspects Med 2012; 33: 487–509.

    Article  CAS  Google Scholar 

  24. Askou AL, Pournaras JA, Pihlmann M, Svalgaard JD, Arsenijevic Y, Kostic C et al. Reduction of choroidal neovascularization in mice by adeno-associated virus-delivered anti-vascular endothelial growth factor short hairpin RNA. J Gene Med 2012; 14: 632–641.

    Article  CAS  Google Scholar 

  25. Cashman SM, Ramo K, Kumar-Singh R . A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration. PLoS One 2011; 6: e19078.

    Article  CAS  Google Scholar 

  26. McClements ME, MacLaren RE . Gene therapy for retinal disease. Transl Res 2013; 161: 241–254.

    Article  CAS  Google Scholar 

  27. Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 2012; 1: 200–207.

    Article  CAS  Google Scholar 

  28. Sparrow JR, Ueda K, Zhou J . Complement dysregulation in AMD: RPE-Bruch's membrane-choroid. Mol Aspects Med 2012; 33: 436–445.

    Article  CAS  Google Scholar 

  29. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 2010; 29: 95–112.

    Article  CAS  Google Scholar 

  30. Ricklin D, Hajishengallis G, Yang K, Lambris JD . Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785–797.

    Article  CAS  Google Scholar 

  31. Ambati J, Atkinson JP, Gelfand BD . Immunology of age-related macular degeneration. Nat Rev Immunol 2013; 13: 438–451.

    Article  CAS  Google Scholar 

  32. Ambati J, Fowler BJ . Mechanisms of age-related macular degeneration. Neuron 2012; 75: 26–39.

    Article  CAS  Google Scholar 

  33. Yanai R, Thanos A, Connor KM . Complement involvement in neovascular ocular diseases. Adv Exp Med Biol 2012; 946: 161–183.

    Article  CAS  Google Scholar 

  34. Sottile J . Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta 2004; 1654: 13–22.

    CAS  PubMed  Google Scholar 

  35. Ricklin D . Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology 2012; 217: 1057–1066.

    Article  CAS  Google Scholar 

  36. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 2012; 4: 120ra15.

    Article  Google Scholar 

  37. Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods 2012; 23: 18–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to RKS from The Ellison Foundation, The Virginia B Smith Trust, The National Institute of Health/NEI (EY021805 and EY013837), The Department of Defense/ TATRC, The Paul and Phyllis Fireman Charitable Foundation and grants to the Department of Ophthalmology at Tufts University School of Medicine from the Lions Eye Foundation and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kumar-Singh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birke, M., Lipo, E., Adhi, M. et al. AAV-mediated expression of human PRELP inhibits complement activation, choroidal neovascularization and deposition of membrane attack complex in mice. Gene Ther 21, 507–513 (2014). https://doi.org/10.1038/gt.2014.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.24

Search

Quick links