Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro

Abstract

Eradication of human immunodeficiency virus-1 (HIV-1) from an infected individual requires a means of inducing production of virus from latently infected cells and stimulating an immune response against the infected cells. We report the development of lentiviral vectors that transduce dendritic cells (DCs) to both induce production of virus from latently infected cells and stimulate antigen-specific cytotoxic T lymphocytes (CTLs). The vectors package Vpx, a lentiviral accessory protein that counteracts the SAMHD1-mediated block to DC transduction, allowing for long-term expression of vector-encoded proteins. The vectors encode influenza or HIV-1-derived epitopes fused via a self-cleaving peptide to CD40L that releases the peptide into the endoplasmic reticulum for entry into the antigen presentation pathway. Expression of CD40L caused transduced DCs to mature and produce Th1-skewing cytokines. The DCs presented antigen to CD8 T cells, enhancing antigen-specific CTLs. Coculture of the transduced DCs with latently infected cells induced high-level virus production, an effect that was mediated by tumor necrosis factor alpha. The ability of a DC vaccine to reactivate latent HIV-1 and stimulate an adaptive immune response provide a means to reduce the size of the latent reservoir in patients. This strategy can also be applied to develop DC vaccines for other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Palucka K, Banchereau J . Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39: 38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinman RM, Banchereau J . Taking dendritic cells into medicine. Nature 2007; 449: 419–426.

    Article  CAS  PubMed  Google Scholar 

  3. Naldini L . Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457–463.

    Article  CAS  PubMed  Google Scholar 

  4. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480: 379–382.

    Article  CAS  PubMed  Google Scholar 

  5. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012; 13: 223–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474: 658–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474: 654–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sunseri N, O'Brien M, Bhardwaj N, Landau NR . Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 2011; 85: 6263–6274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bobadilla S, Sunseri N, Landau NR . Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein. Gene Therapy 2012; 20: 514–520.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bednarek MA, Sauma SY, Gammon MC, Porter G, Tamhankar S, Williamson AR et al. The minimum peptide epitope from the influenza virus matrix protein. Extra and intracellular loading of HLA-A2. J Immunol 1991; 147: 4047–4053.

    CAS  PubMed  Google Scholar 

  11. Koya RC, Kasahara N, Favaro PM, Lau R, Ta HQ, Weber JS et al. Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 2003; 26: 451–460.

    Article  CAS  PubMed  Google Scholar 

  12. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth Jr RJ . Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161: 2094–2098.

    CAS  PubMed  Google Scholar 

  13. Tureci O, Bian H, Nestle FO, Raddrizzani L, Rosinski JA, Tassis A et al. Cascades of transcriptional induction during dendritic cell maturation revealed by genome-wide expression analysis. FASEB J 2003; 17: 836–847.

    Article  CAS  PubMed  Google Scholar 

  14. van Kooten C, Banchereau J . CD40-CD40 ligand. J Leukocyte Biol 2000; 67: 2–17.

    Article  CAS  PubMed  Google Scholar 

  15. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180: 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  16. de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 1998; 160: 1666–1676.

    CAS  PubMed  Google Scholar 

  17. Gray D, Siepmann K, Wohlleben G . CD40 ligation in B cell activation, isotype switching and memory development. Sem Immunol 1994; 6: 303–310.

    Article  CAS  Google Scholar 

  18. Fonteneau JF, Larsson M, Somersan S, Sanders C, Munz C, Kwok WW et al. Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. J Immunol Methods 2001; 258: 111–126.

    Article  CAS  PubMed  Google Scholar 

  19. Tsomides TJ, Aldovini A, Johnson RP, Walker BD, Young RA, Eisen HN . Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J Exp Med 1994; 180: 1283–1293.

    Article  CAS  PubMed  Google Scholar 

  20. Adnan S, Balamurugan A, Trocha A, Bennett MS, Ng HL, Ali A et al. Nef interference with HIV-1-specific CTL antiviral activity is epitope specific. Blood 2006; 108: 3414–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281: 65–78.

    Article  CAS  PubMed  Google Scholar 

  22. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH et al. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 1989; 86: 2365–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jordan A, Bisgrove D, Verdin E . HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 2003; 22: 1868–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  25. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ t cells from aviremic patients. PLoS Pathogens 2013; 9: e1003834.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A et al. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med 1990; 172: 151–158.

    Article  CAS  PubMed  Google Scholar 

  27. Wang FX, Xu Y, Sullivan J, Souder E, Argyris EG, Acheampong EA et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005; 115: 128–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Durand S, Nguyen XN, Turpin J, Cordeil S, Nazaret N, Croze S et al. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes. J Virol 2013; 87: 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Negri DR, Rossi A, Blasi M, Michelini Z, Leone P, Chiantore MV et al. Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral vector-based vaccines. Retrovirology 2012; 9: 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tareen SU, Kelley-Clarke B, Nicolai CJ, Cassiano LA, Nelson LT, Slough MM et al. Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 2013; 22: 575–587.

    Article  PubMed  Google Scholar 

  31. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Auten MW, Huang W, Dai G, Ramsay AJ . CD40 ligand enhances immunogenicity of vector-based vaccines in immunocompetent and CD4+ T cell deficient individuals. Vaccine 2012; 30: 2768–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dybul M, Mercier G, Belson M, Hallahan CW, Liu S, Perry C et al. CD40 ligand trimer and IL-12 enhance peripheral blood mononuclear cells and CD4+ T cell proliferation and production of IFN-gamma in response to p24 antigen in HIV-infected individuals: potential contribution of anergy to HIV-specific unresponsiveness. J Immunol 2000; 165: 1685–1691.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang R, Zhang S, Li M, Chen C, Yao Q . Incorporation of CD40 ligand into SHIV virus-like particles (VLP) enhances SHIV-VLP-induced dendritic cell activation and boosts immune responses against HIV. Vaccine 2010; 28: 5114–5127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kutsch O, Levy DN, Kosloff BR, Shaw GM, Benveniste EN . CD154-CD40-induced reactivation of latent HIV-1 infection. Virology 2003; 314: 261–270.

    Article  CAS  PubMed  Google Scholar 

  36. Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 2001; 19: 3280–3287.

    Article  CAS  PubMed  Google Scholar 

  37. Miller E, Bhardwaj N . Dendritic cell dysregulation during HIV-1 infection. Immunol Rev 2013; 254: 170–189.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miller EA, Spadaccia MR, O'Brien MP, Rolnitzky L, Sabado R, Manches O et al. Plasma factors during chronic HIV-1 infection impair IL-12 secretion by myeloid dendritic cells via a virus-independent pathway. J Acquir Immune Defic Syndr 2012; 61: 535–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Katlama C, Deeks SG, Autran B, Martinez-Picado J, van Lunzen J, Rouzioux C et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 2013; 381: 2109–2117.

    Article  CAS  PubMed  Google Scholar 

  40. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 2012; 36: 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Firat H, Tourdot S, Ureta-Vidal A, Scardino A, Suhrbier A, Buseyne F et al. Design of a polyepitope construct for the induction of HLA-A0201-restricted HIV 1-specific CTL responses using HLA-A*0201 transgenic, H-2 class I KO mice. Eur J Immunol 2001; 31: 3064–3074.

    Article  CAS  PubMed  Google Scholar 

  42. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PloS One 2009; 4: e6529.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Anderson K, Cresswell P, Gammon M, Hermes J, Williamson A, Zweerink H . Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J Exp Med 1991; 174: 489–492.

    Article  CAS  PubMed  Google Scholar 

  44. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  PubMed  Google Scholar 

  45. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Clouse KA, Powell D, Washington I, Poli G, Strebel K, Farrar W et al. Monokine regulation of human immunodeficiency virus-1 expression in a chronically infected human T cell clone. J Immunol 1989; 142: 431–438.

    CAS  PubMed  Google Scholar 

  47. Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O'Brien WA, Ratner L et al. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000; 74: 8358–8367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC . Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. J Virol 2009; 83: 8289–8292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46: 1896–1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The following reagents were obtained through the AIDS Reagent Program, Division of AIDS, NIAID, NIH: Nevirapine, ACH-2 cells from Thomas Folks; J-Lat cells from Eric Verdin; TZM-bl cells from John Kappes, Xiaoyun Wu and Tranzyme Inc. We thank Otto Yang (UCLA) for CTL clone S1-SL9-3.23T, Shane Boley (NYU) for anti-TNF-α mAb, Mengling Liu (NYU) for assistance with statistical analysis and David Raulet (U C Berkeley) and Megan Schultz (NYU) for critical reading of the manuscript. This work was supported by grants from the NIH (UL1TR000038, AI058864, AI067059, AI84578, AI044628, AI067854 and AI43222), the Bill and Melinda Gates Foundation (38645) and NYU School of Medicine Saul Farber Scholar Fund, Grunebaum AIDS Research Scholarship and Physician Scientist Training Program Awards to EAM and TDN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N R Landau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norton, T., Miller, E., Bhardwaj, N. et al. Vpx-containing dendritic cell vaccine induces CTLs and reactivates latent HIV-1 in vitro. Gene Ther 22, 227–236 (2015). https://doi.org/10.1038/gt.2014.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.117

This article is cited by

Search

Quick links