Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease

Abstract

Sandhoff disease (SD) is caused by deficiency of N-acetyl-β-hexosaminidase (Hex) resulting in pathological accumulation of GM2 ganglioside in lysosomes of the central nervous system (CNS) and progressive neurodegeneration. Currently, there is no treatment for SD, which often results in death by the age of five years. Adeno-associated virus (AAV) gene therapy achieved global CNS Hex restoration and widespread normalization of storage in the SD mouse model. Using a similar treatment approach, we sought to translate the outcome in mice to the feline SD model as an important step toward human clinical trials. Sixteen weeks after four intracranial injections of AAVrh8 vectors, Hex activity was restored to above normal levels throughout the entire CNS and in cerebrospinal fluid, despite a humoral immune response to the vector. In accordance with significant normalization of a secondary lysosomal biomarker, ganglioside storage was substantially improved, but not completely cleared. At the study endpoint, 5-month-old AAV-treated SD cats had preserved neurological function and gait compared with untreated animals (humane endpoint, 4.4±0.6 months) demonstrating clinical benefit from AAV treatment. Translation of widespread biochemical disease correction from the mouse to the feline SD model provides optimism for treatment of the larger human CNS with minimal modification of approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gravel R, Clarke JTR, Kaback MM, Mahuran D, Sandhoff K, Suzuki K . The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Molecular and Metabolic Bases of Inherited Disease, 8th edn. Vol 3. McGraw-Hill Inc.: New York pp 3827–3876 2001.

    Google Scholar 

  2. Conzelmann E, Kytzia H, Navon R, Sandhoff K . Ganglioside GM2 N-acetyl-beta-D-galactosaminidase activity in cultured fibroblasts of late-infantile and adult GM2 gangliosidosis patients and of healthy probands with low hexosaminidase level. Am J Hum Genet 1983; 35: 900–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bembi B, Marchetti F, Guerci V, Ciana G, Addobbati R, Grasso D et al. Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology 2006; 66: 278–280.

    Article  CAS  Google Scholar 

  4. Shapiro BE, Pastores GM, Gianutsos J, Luzy C, Kolodny EH . Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med 2009; 11: 425–433.

    Article  CAS  Google Scholar 

  5. Maegawa GH, Banwell BL, Blaser S, Sorge G, Toplak M, Ackerley C et al. Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol Gen Metab 2009; 98: 215–224.

    Article  CAS  Google Scholar 

  6. Clarke JTR, Mahuran DJ, Sathe S, Kolodny EH, Rigat BA, Raiman JA et al. An open-label Phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay–Sachs or Sandhoff variants). Mol Genet Metab 2011; 102: 6–12.

    Article  CAS  Google Scholar 

  7. Osher E, Fattal-Valevski A, Sagie L, Urshanski N, Amir-Levi Y, Katzburg S et al. Pyrimethamine increases β-hexosaminidase A activity in patients with Late Onset Tay Sachs. Mol Genet Metab 2011; 102: 356–363.

    Article  CAS  Google Scholar 

  8. Jacobs J, Willemsen M, Groot-Loonen J, Wevers R, Hoogerbrugge P . Allogeneic BMT followed by substrate reduction therapy in a child with subacute Tay-Sachs disease. Bone Marrow Transplant 2005; 36: 925–926.

    Article  CAS  Google Scholar 

  9. Hickman S, Neufeld EF . A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun 1972; 49: 992–999.

    Article  CAS  Google Scholar 

  10. Neufeld EF, Fratantoni JC . Inborn errors of mucopolysaccharide metabolism. Science 1970; 169: 141–146.

    Article  CAS  Google Scholar 

  11. Broekman M, Tierney L, Benn C, Chawla P, Cha J, Sena-Esteves M . Mechanisms of distribution of mouse β-galactosidase in the adult GM1-gangliosidosis brain. Gene Ther 2008; 16: 303–308.

    Article  Google Scholar 

  12. Passini MA, Lee EB, Heuer GG, Wolfe JH . Distribution of a lysosomal enzyme in the adult brain by axonal transport and by cells of the rostral migratory stream. J Neurosci 2002; 22: 6437–6446.

    Article  CAS  Google Scholar 

  13. Haurigot V, Marco S, Ribera A, Garcia M, Ruzo A, Villacampa P et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J Clin Invest 2013; 123: 3254–3271.

    Article  CAS  Google Scholar 

  14. Bu J, Ashe KM, Bringas J, Marshall J, Dodge JC, Cabrera-Salazar MA et al. Merits of combination cortical, subcortical, and cerebellar injections for the treatment of Niemann-Pick Disease Type A. Mol Ther 2012; 20: 1893–1901.

    Article  CAS  Google Scholar 

  15. Vite CH, McGowan JC, Niogi SN, Passini MA, Drobatz KJ, Haskins ME et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann Neurol 2005; 57: 355–364.

    Article  CAS  Google Scholar 

  16. Ellinwood NM, Ausseil J, Desmaris N, Bigou S, Liu S, Jens JK et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 2010; 19: 251–259.

    Article  Google Scholar 

  17. Cabrera-Salazar MA, Roskelley EM, Bu J, Hodges BL, Yew N, Dodge JC et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease. Mol Ther 2007; 15: 1782–1788.

    Article  CAS  Google Scholar 

  18. Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM . Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 2006; 103: 10373–10378.

    Article  Google Scholar 

  19. Cachón-González MB, Wang SZ, McNair R, Bradley J, Lunn D, Ziegler R et al. Gene transfer corrects acute GM2 gangliosidosis—potential therapeutic contribution of perivascular enzyme flow. Mol Ther 2012; 20: 1489–1500.

    Article  Google Scholar 

  20. Bradbury AM, Cochran JN, McCurdy VJ, Johnson AK, Brunson BL, Gray-Edwards H et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol Ther 2013; 21: 1306–1315.

    Article  CAS  Google Scholar 

  21. Cork L, Munnell JF, Lorenz MD, Murphy JV, Baker HJ, Rattazzi MC . GM2 ganglioside lysosomal storage disease in cats with beta-hexosaminidase deficiency. Science 1977; 196: 1014–1017.

    Article  CAS  Google Scholar 

  22. Cork LC, Munnell JF, Lorenz MD . The pathology of feline GM2 gangliosidosis. Am J Pathol 1978; 90: 723–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin DR, Krum BK, Varadarajan G, Hathcock TL, Smith BF, Baker HJ . An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 2004; 187: 30–37.

    Article  CAS  Google Scholar 

  24. McCurdy VJ, Johnson AK, Gray-Edwards HL, Randle AN, Brunson BL, Morrison NE et al. Sustained normalization of neurological disease after intracranial gene therapy in a feline model. Sci Transl Med 2014; 6: 231ra48.

    Article  Google Scholar 

  25. Lowenstein PR, Mandel RJ, Xiong W, Kroeger K, Castro MG . Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 2007; 7: 347–360.

    Article  CAS  Google Scholar 

  26. Ciron C, Cressant A, Roux F, Raoul S, Cherel Y, Hantraye P et al. Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 2009; 20: 350–360.

    Article  CAS  Google Scholar 

  27. Baek RC, Martin DR, Cox NR, Seyfried TN . Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2009; 44: 197–205.

    Article  CAS  Google Scholar 

  28. Cressant A, Desmaris N, Verot L, Bréjot T, Froissart R, Vanier MT et al. Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J Neurosci 2004; 24: 10229–10239.

    Article  CAS  Google Scholar 

  29. Meikle PJ, Hopwood JJ, Clague AE, Carey WF . Prevalence of lysosomal storage disorders. J Amer Med Assoc 1999; 281: 249–254.

    Article  CAS  Google Scholar 

  30. Tsuji D, Akeboshi H, Matsuoka K, Yasuoka H, Miyasaki E, Kasahara Y et al. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Ann Neurol 2011; 69: 691–701.

    Article  CAS  Google Scholar 

  31. Matsuoka K, Tamura T, Tsuji D, Dohzono Y, Kitakaze K, Ohno K et al. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis. Mol Ther 2011; 19: 1017–1024.

    Article  CAS  Google Scholar 

  32. Kasperzyk JL, El-Abbadi MM, Hauser EC, D'Azzo A, Platt FM, Seyfried TN . N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 2004; 89: 645–653.

    Article  CAS  Google Scholar 

  33. Arthur J, Lee J, Snyder E, Seyfried T . Therapeutic effects of stem cells and substrate reduction in juvenile Sandhoff mice. Neurochem Res 2012; 37: 1335–1343.

    Article  CAS  Google Scholar 

  34. Jeyakumar M, Norflus F, Tifft CJ, Cortina-Borja M, Butters TD, Proia RL et al. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 2001; 97: 327–329.

    Article  CAS  Google Scholar 

  35. Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 2007; 13: 439–447.

    Article  CAS  Google Scholar 

  36. Norflus F, Tifft CJ, McDonald MP, Goldstein G, Crawley JN, Hoffmann A et al. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest 1998; 101: 1881.

    Article  CAS  Google Scholar 

  37. Rattazzi M, Appel A, Baker H . Enzyme replacement in feline GM2 gangliosidosis: catabolic effects of human beta-hexosaminidase A. Prog Clin Biol Res 1982; 94: 213–220.

    CAS  PubMed  Google Scholar 

  38. O'Brien JS, Storb R, Raff RF, Harding J, Appelbaum F, Morimoto S et al. Bone marrow transplantation in canine GM1 gangliosidosis. Clin Genet 1990; 38: 274–280.

    Article  CAS  Google Scholar 

  39. Ellinwood NM, Ausseil J, Desmaris N, Bigou S, Liu S, Jens JK et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 2011; 19: 251–259.

    Article  CAS  Google Scholar 

  40. Baek RC, Broekman MLD, Leroy SG, Tierney LA, Sandberg MA, d’Azzo A et al. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One 2010; 5: e13468.

    Article  Google Scholar 

  41. Dickson PI, Hanson S, McEntee MF, Vite CH, Vogler CA, Mlikotic A et al. Early versus late treatment of spinal cord compression with long-term intrathecal enzyme replacement therapy in canine mucopolysaccharidosis type I. Mol Genet Metab 2010; 101: 115–122.

    Article  CAS  Google Scholar 

  42. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Huynh T et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31: 1095–1108.

    Article  CAS  Google Scholar 

  43. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 2012; 23: 382–389.

    Article  CAS  Google Scholar 

  44. Gray SJ, Kalburgi SN, McCown TJ, Samulski RJ . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 2013; 20: 450–459.

    Article  CAS  Google Scholar 

  45. Vogler C, Galvin N, Levy B, Grubb J, Jiang J, Zhou XY et al. Transgene produces massive overexpression of human β-glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors. Proc Natl Acad Sci USA 2003; 100: 2669–2673.

    Article  CAS  Google Scholar 

  46. Klein RL, Dayton RD, Leidenheimer NJ, Jansen K, Golde TE, Zweig RM . Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 2006; 13: 517–527.

    Article  CAS  Google Scholar 

  47. Wang L, Wang H, Bell P, McCarter RJ, He J, Calcedo R et al. Systematic evaluation of AAV vectors for liver directed gene transfer in murine models. Mol Ther 2010; 18: 118–125.

    Article  CAS  Google Scholar 

  48. Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 2014; 22: 1299–1309.

    Article  CAS  Google Scholar 

  49. Broekman M, Comer L, Hyman B, Sena-Esteves M . Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or-2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 2006; 138: 501–510.

    Article  CAS  Google Scholar 

  50. Lacorazza HD, Jendoubi M . In situ assessment of beta-hexosaminidase activity. Biotechniques 1995; 19: 434–440.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the US National Institutes of Health (U01NS064096 to MSE and DRM) and contributions from the Scott-Ritchey Research Center, National Tay-Sachs and Allied Diseases Association, the Jewish Community Endowment Fund, and the Cure Tay-Sachs Foundation. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Martin.

Ethics declarations

Competing interests

Dr Martin and Dr Sena-Esteves received NIH funding to perform this study. Dr Martin received funding contributions from the Scott-Ritchey Research Center, National Tay-Sachs and Allied Diseases Association, the Jewish Community Endowment Fund, and the Cure Tay-Sachs Foundation to perform this study. All other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCurdy, V., Rockwell, H., Arthur, J. et al. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease. Gene Ther 22, 181–189 (2015). https://doi.org/10.1038/gt.2014.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.108

This article is cited by

Search

Quick links