Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells

Abstract

The release of cytokines by T cells strongly defines their functional activity in vivo. The ability to produce multiple cytokines has been associated with beneficial immune responses in cancer and infectious diseases, while their progressive loss is associated with T-cell exhaustion, senescence and anergy. Consequently, strategies that enhance the multifunctional status of T cells are a key for immunotherapy. Dendritic cells (DCs) are professional antigen presenting cells that regulate T-cell functions by providing positive and negative co-stimulatory signals. A key negative regulator of T-cell activity is provided by binding of programmed death-1 (PD-1) receptor on activated T cells, to its ligand PD-L1, expressed on DCs. We investigated the impact of interfering with PD-L1/PD-1 co-stimulation on the multifunctionality of T cells, by expression of the soluble extracellular part of PD-1 (sPD-1) or PD-L1 (sPD-L1) in human monocyte-derived DCs during antigen presentation. Expression, secretion and binding of these soluble molecules after mRNA electroporation were demonstrated. Modification of DCs with sPD-1 or sPD-L1 mRNA resulted in increased levels of the co-stimulatory molecule CD80 and a distinct cytokine profile, characterized by the secretion of IL-10 and TNF-α, respectively. Co-expression in DCs of sPD-1 and sPD-L1 with influenza virus nuclear protein 1 (Flu NP1) stimulated Flu NP1 memory T cells, with a significantly higher number of multifunctional T cells and increased cytokine secretion, while it did not induce regulatory T cells. These data provide a rationale for the inclusion of interfering sPD-1 or sPD-L1 in DC-based immunotherapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wolfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li HM, Netski D et al. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. J Immunol 2008; 181: 6435–6446.

    Article  CAS  Google Scholar 

  2. Zajac AJ, Murali-Krishna K, Blattman JN, Ahmed R . Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr Opin Immunol 1998; 10: 444–449.

    Article  CAS  Google Scholar 

  3. Rabinovich GA, Gabrilovich D, Sotomayor EM . Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25: 267–296.

    Article  CAS  Google Scholar 

  4. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998; 188: 2205–2213.

    Article  CAS  Google Scholar 

  5. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001; 193: 839–846.

    Article  CAS  Google Scholar 

  6. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH et al. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 2002; 169: 3447–3458.

    Article  CAS  Google Scholar 

  7. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999; 5: 677–685.

    Article  CAS  Google Scholar 

  8. Francisco LM, Sage PT, Sharpe AH . The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236: 219–242.

    Article  CAS  Google Scholar 

  9. Radziewicz H, Ibegbu CC, Fernandez ML, Workowski KA, Obideen K, Wehbi M et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 2007; 81: 2545–2553.

    Article  CAS  Google Scholar 

  10. Rutebemberwa A, Ray SC, Astemborski J, Levine J, Liu L, Dowd KA et al. High-programmed death-1 levels on hepatitis C virus-specific T cells during acute infection are associated with viral persistence and require preservation of cognate antigen during chronic infection. J Immunol 2008; 181: 8215–8225.

    Article  CAS  Google Scholar 

  11. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114: 1537–1544.

    Article  CAS  Google Scholar 

  12. Keir ME, Butte MJ, Freeman GJ, Sharpe AH . PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704.

    Article  CAS  Google Scholar 

  13. Punkosdy GA, Blain M, Glass DD, Lozano MM, O'Mara L, Dudley JP et al. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc Natl Acad Sci USA 2011; 108: 3677–3682.

    Article  CAS  Google Scholar 

  14. Wang W, Lau R, Yu D, Zhu W, Korman A, Weber J . PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol 2009; 21: 1065–1077.

    Article  CAS  Google Scholar 

  15. Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M . Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 2005; 6: 280–286.

    Article  CAS  Google Scholar 

  16. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  Google Scholar 

  17. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L . B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008; 111: 3635–3643.

    Article  CAS  Google Scholar 

  18. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.

    Article  CAS  Google Scholar 

  19. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    Article  CAS  Google Scholar 

  20. Zitvogel L, Kroemer G . Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012; 1: 1223–1225.

    Article  Google Scholar 

  21. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443: 350–354.

    Article  CAS  Google Scholar 

  22. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 2010; 16: 452–459.

    Article  CAS  Google Scholar 

  23. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–687.

    Article  CAS  Google Scholar 

  24. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001; 291: 319–322.

    Article  CAS  Google Scholar 

  25. Nishimura H, Nose M, Hiai H, Minato N, Honjo T . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141–151.

    Article  CAS  Google Scholar 

  26. Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L . B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 2004; 20: 327–336.

    Article  CAS  Google Scholar 

  27. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669.

    Article  CAS  Google Scholar 

  28. Tuyaerts S, Aerts JL, Corthals J, Neyns B, Heirman C, Breckpot K et al. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 2007; 56: 1513–1537.

    Article  CAS  Google Scholar 

  29. Allard SD, De Keersmaecker B, de Goede AL, Verschuren EJ, Koetsveld J, Reedijk ML et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 2011; 142: 252–268.

    Article  Google Scholar 

  30. Karwacz K, Arce F, Bricogne C, Kochan G, Escors D . PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy. Oncoimmunology 2012; 1: 86–88.

    Article  Google Scholar 

  31. Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M et al. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 2011; 3: 581–592.

    Article  CAS  Google Scholar 

  32. Liechtenstein T, Dufait I, Lanna A, Breckpot K, Escors D . Modulating co-stimulation during antigen presentation to enhance cancer immunotherapy. Immunol Endocr Metab Agents Med Chem 2012; 12: 224–235.

    Article  CAS  Google Scholar 

  33. Hatam LJ, Devoti JA, Rosenthal DW, Lam F, Abramson AL, Steinberg BM et al. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD-1/PD-L1/L2 expression. Clin Cancer Res 2012; 18: 1925–1935.

    Article  CAS  Google Scholar 

  34. Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 2013; 190: 4899–4909.

    Article  CAS  Google Scholar 

  35. Shen T, Zheng J, Liang H, Xu C, Chen X, Zhang T et al. Characteristics and PD-1 expression of peripheral CD4+CD127loCD25hiFoxP3+ Treg cells in chronic HCV infected-patients. Virol J 2011; 8: 279.

    Article  Google Scholar 

  36. Chen J, Wang XM, Wu XJ, Wang Y, Zhao H, Shen B et al. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B. Inflamm Res 2011; 60: 47–53.

    Article  Google Scholar 

  37. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206: 3015–3029.

    Article  CAS  Google Scholar 

  38. Jin HT, Ahmed R, Okazaki T . Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 2011; 350: 17–37.

    CAS  PubMed  Google Scholar 

  39. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A . Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 2007; 178: 320–329.

    Article  CAS  Google Scholar 

  40. Pen J, De Keersmaecker B, Maenhout S, Van Nuffel AMT, Heirman C, Corthals J et al. Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J Immunol 2013; 191: 1976–1983.

    Article  CAS  Google Scholar 

  41. Arce F, Breckpot K, Stephenson H, Karwacz K, Ehrenstein MR, Collins M et al. Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum 2011; 63: 84–95.

    Article  CAS  Google Scholar 

  42. Escors D, Bricogne C, Arce F, Kochan G, Karwacz K . On the Mechanism of T cell receptor down-modulation and its physiological significance. J Biosci Med 2011; 1: 1–9.

    Article  Google Scholar 

  43. Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang ST . Alternative splice variants of the human PD-1 gene. Cell Immunol 2005; 235: 109–116.

    Article  CAS  Google Scholar 

  44. He XH, Xu LH, Liu Y . Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain. Acta Pharmacol Sin 2005; 26: 462–468.

    Article  CAS  Google Scholar 

  45. Wan B, Nie H, Liu A, Feng G, He D, Xu R et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol 2006; 177: 8844–8850.

    Article  CAS  Google Scholar 

  46. Grzywnowicz M, Zaleska J, Mertens D, Tomczak W, Wlasiuk P, Kosior K et al. Programmed death-1 and its ligand are novel immunotolerant molecules expressed on leukemic B cells in chronic lymphocytic leukemia. PLoS One 2012; 7: e35178.

    Article  CAS  Google Scholar 

  47. Song MY, Park SH, Nam HJ, Choi DH, Sung YC . Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J Immunother 2011; 34: 297–306.

    Article  CAS  Google Scholar 

  48. He YF, Zhang GM, Wang XH, Zhang H, Yuan Y, Li D et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 2004; 173: 4919–4928.

    Article  CAS  Google Scholar 

  49. Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol 2006; 36: 2472–2482.

    Article  CAS  Google Scholar 

  50. Cederbom L, Hall H, Ivars F . CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000; 30: 1538–1543.

    Article  CAS  Google Scholar 

  51. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV . Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 2004; 172: 4676–4680.

    Article  CAS  Google Scholar 

  52. Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH . Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006; 203: 2223–2227.

    Article  CAS  Google Scholar 

  53. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 2006; 12: 1198–1202.

    Article  CAS  Google Scholar 

  54. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003; 5: 654–667.

    Article  CAS  Google Scholar 

  55. Breckpot K, Escors D, Arce F, Lopes L, Karwacz K, Van Lint S et al. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 2010; 84: 5627–5636.

    Article  CAS  Google Scholar 

  56. Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C et al. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 2002; 264: 135–151.

    Article  CAS  Google Scholar 

  57. Van Lint S, Goyvaerts C, Maenhout S, Goethals L, Disy A, Benteyn D et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 2012; 72: 1661–1671.

    Article  CAS  Google Scholar 

  58. Bonehill A, Heirman C, Tuyaerts S, Michiels A, Breckpot K, Brasseur F et al. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 2004; 172: 6649–6657.

    Article  CAS  Google Scholar 

  59. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997; 27: 3135–3142.

    Article  CAS  Google Scholar 

  60. Breckpot K, Corthals J, Bonehill A, Michiels A, Tuyaerts S, Aerts C et al. Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J Leukoc Biol 2005; 78: 898–908.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Elsy Vaeremans, Petra Roman and Xavier Debaere for mRNA supply, as well as Chiraz Mahmoud and Steven Heynderickx for leukapheresis and cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Breckpot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pen, J., Keersmaecker, B., Heirman, C. et al. Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Ther 21, 262–271 (2014). https://doi.org/10.1038/gt.2013.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.80

Keywords

This article is cited by

Search

Quick links