Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In the rat liver, Adenoviral gene transfer efficiency is comparable to AAV

Abstract

Adenoviral (AdV) and Adenovirus-associated viral (AAV) vectors both are used for in vivo gene therapy of inherited liver disorders, such as Crigler–Najjar syndrome type 1. In a relevant animal model, the Gunn rat, both vectors efficiently correct the severe hyperbilirubinemia characteristic of this liver disorder. Although the clinical use of AAV is more advanced, as demonstrated by the successful phase 1 trial in hemophilia B patients, because of its large cloning capacity AdV remains an attractive option. A direct comparison of the efficacy of these two vectors in the liver in a relevant disease model has not been reported. Aim of this study was to compare the efficiency of clinically applicable doses of both vectors in the Gunn rat. AdV or scAAV (self-complimentary AAV) ferrying identical liver-specific expression cassettes of the therapeutic gene, UGT1A1, were injected into the tail vein. As the titration methods of these two vectors are very different, a comparison based on vector titers is not valid. Therefore, their efficacy was compared by determining the amount of vector genomes delivered to the liver required for therapeutic correction of serum bilirubin. Like AAV, the liver-specific first-generation AdV also provided sustained correction in this relevant disease model. UGT1A1 mRNA expression provided per genome was comparable for both vectors. Flanking the expression cassette in AdV with AAV-ITRs (inverted terminal repeats), increased UGT1A1 mRNA expression eightfold which resulted in a significant improvement of efficacy. Compared with AAV, less AdV genomes were needed for complete correction of hyperbilirubinemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miranda PS, Bosma PJ . Towards liver-directed gene therapy for Crigler–Najjar syndrome. Curr Gene Ther 2009; 9: 72–82.

    Article  CAS  PubMed  Google Scholar 

  2. Bosma PJ . Inherited disorders of bilirubin metabolism. J Hepatol 2003; 38: 107–117.

    Article  CAS  PubMed  Google Scholar 

  3. Strauss KA, Robinson DL, Vreman HJ, Puffenberger EG, Hart G, Morton DH . Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler–Najjar disease. Eur J Pediatr 2006; 165: 306–319.

    Article  PubMed  Google Scholar 

  4. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI et al. Treatment of the Crigler–Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 1998; 338: 1422–1426.

    Article  CAS  PubMed  Google Scholar 

  5. Grieger JC, Samulski RJ . Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 2005; 99: 119–145.

    CAS  PubMed  Google Scholar 

  6. Wilson JM . Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 334: 1185–1187.

    Article  CAS  PubMed  Google Scholar 

  7. Connelly S . Adenoviral vectors for liver-directed gene therapy. Curr Opin Mol Ther 1999; 1: 565–572.

    CAS  PubMed  Google Scholar 

  8. Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–276.

    Article  CAS  PubMed  Google Scholar 

  9. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD . Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA 1997; 94: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Askari FK, Hitomi Y, Mao M, Wilson JM . Complete correction of hyperbilirubinemia in the Gunn rat model of Crigler–Najjar syndrome type I following transient in vivo adenovirus-mediated expression of human bilirubin UDP-glucuronosyltransferase. Gene Therapy 1996; 3: 381–388.

    CAS  PubMed  Google Scholar 

  11. Toietta G, Mane VP, Norona WS, Finegold MJ, Ng P, McDonagh AF et al. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 2005; 102: 3930–3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dimmock D, Brunetti-Pierri N, Palmer DJ, Beaudet AL, Ng P . Correction of hyperbilirubinemia in Gunn rats using clinically relevant low doses of helper-dependent adenoviral vectors. Hum Gene Ther 2011; 22: 483–488.

    Article  CAS  PubMed  Google Scholar 

  13. McCaffrey AP, Fawcett P, Nakai H, McCaffrey RL, Ehrhardt A, Pham TT et al. The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther 2008; 16: 931–941.

    Article  CAS  PubMed  Google Scholar 

  14. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seppen J, Bakker C, de JB, Kunne C, van den OK, Vandenberghe K et al. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther 2006; 13: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  16. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thummala NR, Ghosh SS, Lee SW, Reddy B, Davidson A, Horwitz MS et al. A non-immunogenic adenoviral vector, coexpressing CTLA4Ig and bilirubin-uridine-diphosphoglucuronateglucuronosyltransferase permits long-term, repeatable transgene expression in the Gunn rat model of Crigler–Najjar syndrome. Gene Therapy 2002; 9: 981–990.

    Article  CAS  PubMed  Google Scholar 

  18. Schaack J, Bennett ML, Shapiro GS, DeGregori J, McManaman JL, Moorhead JW . Strong foreign promoters contribute to innate inflammatory responses induced by adenovirus transducing vectors. Virology 2011; 412: 28–35.

    Article  CAS  PubMed  Google Scholar 

  19. Nakai M, Komiya K, Murata M, Kimura T, Kanaoka M, Kanegae Y et al. Expression of pIX gene induced by transgene promoter: possible cause of host immune response in first-generation adenoviral vectors. Hum Gene Ther 2007; 18: 925–936.

    Article  CAS  PubMed  Google Scholar 

  20. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Q, Murphree SS, Willer SS, Bolli R, French BA . Gene therapy with bilirubin-UDP-glucuronosyltransferase in the Gunn rat model of Crigler–Najjar syndrome type 1. Hum Gene Ther 1998; 9: 497–505.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Jooss KU, Su Q, Ertl HC, Wilson JM . Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Therapy 1996; 3: 137–144.

    PubMed  Google Scholar 

  24. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM . Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6: 395–404.

    Article  CAS  PubMed  Google Scholar 

  25. Breous E, Somanathan S, Bell P, Wilson JM . Inflammation promotes the loss of adeno-associated virus-mediated transgene expression in mouse liver. Gastroenterology 2011; 141: 357.

    Article  Google Scholar 

  26. Pastore L, Morral N, Zhou H, Garcia R, Parks RJ, Kochanek S et al. Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors. Hum Gene Ther 1999; 10: 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  27. Haberman RP, McCown TJ, Samulski RJ . Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element. J Virol 2000; 74: 8732–8739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang CY, Wang S . Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Therapy 2006; 13: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  29. Johnston KM, Jacoby D, Pechan PA, Fraefel C, Borghesani P, Schuback D et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 1997; 8: 359–370.

    Article  CAS  PubMed  Google Scholar 

  30. Flotte TR, Afione SA, Solow R, Drumm ML, Markakis D, Guggino WB et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem 1993; 268: 3781–3790.

    CAS  PubMed  Google Scholar 

  31. Fagone P, Wright JF, Nathwani AC, Nienhuis AW, Davidoff AM, Gray JT . Systemic errors in quantitative polymerase chain reaction titration of self-complementary adeno-associated viral vectors and improved alternative methods. Hum Gene Ther Methods 2012; 23: 1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Seppen J, Bosma PJ, Goldhoorn BG, Bakker CT, Chowdhury JR, Chowdhury NR et al. Discrimination between Crigler–Najjar type I and II by expression of mutant bilirubin uridine diphosphate-glucuronosyltransferase. J Clin Invest 1994; 94: 2385–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Montenegro-Miranda PS, Sneitz N, de Waart DR, Ten BL, Duijst S, de Knegt RJ et al. Ezetimibe: a biomarker for efficacy of liver directed UGT1A1 gene therapy for inherited hyperbilirubinemia. Biochim Biophys Acta 2012; 1822: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  34. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bewig B, Schmidt WE . Accelerated titering of adenoviruses. Biotechniques 2000; 28: 870–873.

    Article  CAS  PubMed  Google Scholar 

  36. Boom R, Sol CJ, Heijtink R, Wertheim-van Dillen PM, van der Noordaa J . Rapid purification of hepatitis B virus DNA from serum. J Clin Microbiol 1991; 29: 1804–1811.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009; 37: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the gene therapy lab of Nantes for production of the Adenoviral vectors. This work has been supported by a grant from ZonMw to PJB and from AFM to NF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Bosma.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montenegro-Miranda, P., Pichard, V., Aubert, D. et al. In the rat liver, Adenoviral gene transfer efficiency is comparable to AAV. Gene Ther 21, 168–174 (2014). https://doi.org/10.1038/gt.2013.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.69

Keywords

This article is cited by

Search

Quick links