Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist

Abstract

With the long-term aim of developing a new type of therapy for diabetes, we have investigated the reprogramming of liver cells in normal mice toward a pancreatic phenotype using the gene combination Pdx1, Ngn3, MafA. CD1 mice were rendered diabetic with streptozotocin and given a single dose of Ad-PNM, an adenoviral vector containing all three genes. Ad-PNM induced hepatocytes of the liver to produce insulin, and the blood glucose became normalized. But over several weeks, the insulin-positive cells were lost and the blood glucose rose back to diabetic levels. Simultaneous administration of a peroxisome-proliferator-activated receptor agonist, WY14643, caused remission of diabetes at a lower dose of Ad-PNM and also caused the appearance of a population of insulin-secreting ductal structures in the liver. The insulin-positive ducts were stable and were able to relieve diabetes in the long term. We show that the effect of WY14643 is associated with the promotion of cell division of the ductal cells, which may increase their susceptibility to being reprogrammed toward a beta cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000; 6: 568–572.

    Article  CAS  Google Scholar 

  2. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 2003; 278: 31950–31957.

    Article  CAS  Google Scholar 

  3. Miyatsuka T, Kaneto H, Kajimoto Y, Hirota S, Arakawa Y, Fujitani Y et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Comm 2003; 310: 1017–1025.

    Article  CAS  Google Scholar 

  4. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003; 9: 596–603.

    Article  CAS  Google Scholar 

  5. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka T, Matsuhisa M, Hori M et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005; 54: 1009–1022.

    Article  CAS  Google Scholar 

  6. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H et al. Neurogenin3 Is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 2009; 16: 358–373.

    Article  CAS  Google Scholar 

  7. Wang AY, Ehrhardt A, Xu H, Kay MA . Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol The 2007; 15: 255–263.

    CAS  Google Scholar 

  8. Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW . In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc.Natl.Acad.Sci USA 2012; 109: 15336–15341.

    Article  CAS  Google Scholar 

  9. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA . In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627–632.

    Article  CAS  Google Scholar 

  10. Gittes GK . Developmental biology of the pancreas: a comprehensive review. Dev. Biol. 2009; 326: 4–35.

    Article  CAS  Google Scholar 

  11. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci 1994; 91: 4407–4411.

    Article  CAS  Google Scholar 

  12. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W . The PPAR alpha-leukotriene B-4 pathway to inflammation control. Nature 1996; 384: 39–43.

    Article  CAS  Google Scholar 

  13. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA . Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997; 272: 3406–3410.

    Article  CAS  Google Scholar 

  14. Cohen AJ, Grasso P . Review of the hepatic response to hypolipidaemic drugs in rodents and assessment of its toxicological significance to man. Food Cosmet Toxicol 1981; 19: 585–605.

    Article  CAS  Google Scholar 

  15. Ledwith BJ, Johnson TE, Wagner LK, Pauley CJ, Manam S, Galloway SM et al. Growth regulation by peroxisome proliferators: opposing activities in early and late G(1). Cancer Res 1996; 56: 3257–3264.

    CAS  PubMed  Google Scholar 

  16. Austyn JM, Gordon S . F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 1981; 11: 805–815.

    Article  CAS  Google Scholar 

  17. McGuckin MA, Linden SK, Sutton P, Florin TH . Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011; 9: 265–278.

    Article  CAS  Google Scholar 

  18. Shiojiri N, Lemire JM, Fausto N . Cell lineages and oval cell progenitors in rat liver development. Cancer Res 1991; 51: 2611–2620.

    CAS  PubMed  Google Scholar 

  19. Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M . The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA 2003; 100: 11881–11888.

    Article  CAS  Google Scholar 

  20. Duncan AW, Dorrell C, Grompe M . Stem cells and liver regeneration. Gastroenterology 2009; 137: 466–481.

    Article  Google Scholar 

  21. Roskams T, De Vos R, Van Eyken P, Myazaki H, Van Damme B, Desmet V . Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol 1998; 29: 455–463.

    Article  CAS  Google Scholar 

  22. Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L . Extrahepatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA 2004; 101: 2458–2463.

    Article  CAS  Google Scholar 

  23. Meivar-Levy I, Sapir T, Gefen-Halevi S, Aviv V, Barshack I, Onaca N et al. Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein β. Hepatology 2007; 46: 898–905.

    Article  CAS  Google Scholar 

  24. Li WC, Ralphs KL, Slack JMW, Tosh D . Keratinocyte serum free medium maintains long-term liver gene expression and function in cultured rat hepatocytes by preventing the loss of liver-enriched transcription factors. Int J Biochem Cell Biol 2007; 39: 541–554.

    Article  CAS  Google Scholar 

  25. Horb ME, Shen CN, Tosh D, Slack JMW . Experimental conversion of liver to pancreas. Curr Biol 2003; 13: 105–115.

    Article  CAS  Google Scholar 

  26. Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I . Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev 2006; 20: 2293–2305.

    Article  CAS  Google Scholar 

  27. Dorrell C, Erker L, Schug J, Kopp JL, Canaday PS, Fox AJ et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev 2011; 25: 1193–1203.

    Article  CAS  Google Scholar 

  28. Shin S, Walton G, Aoki R, Brondell K, Schug J, Fox A et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev 2011; 25: 1185–1192.

    Article  CAS  Google Scholar 

  29. Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 2012; 15: 885–894.

    Article  CAS  Google Scholar 

  30. Haumaitre C, Lenoir O, Scharfmann R . Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 2008; 28: 6373–6383.

    Article  CAS  Google Scholar 

  31. Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML et al. Reversal of H3K9Me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell Biol 2007; 25: 473–481.

    CAS  Google Scholar 

  32. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S . Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem Cell 2008; 3: 568–574.

    Article  CAS  Google Scholar 

  33. Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 2010; 141: 943–955.

    Article  CAS  Google Scholar 

  34. Hirai H, Tani T, Katoku-Kikyo N, Kellner S, Karian P, Firpo M et al. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells 2011; 29: 1349–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ . A new role for mucins in immunity: insights from gastrointestinal nematode infection. Int J Biochem Cell Biol 2013; 45: 364–374.

    Article  CAS  Google Scholar 

  36. Thornton DJ, Rousseau K, McGuckin MA . Structure and function of the polymeric mucins in airways mucus. Ann Rev Physiol 2008; 70: 459–486.

    Article  CAS  Google Scholar 

  37. Kliewer SA, Xu HE, Lambert MH, Willson TM . Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001; 56: 239–263.

    Article  CAS  Google Scholar 

  38. Akinci E, Banga A, Greder LV, Dutton JR, Slack JMW . Reprogramming of pancreatic exocrine cells towards a beta cell character using Pdx1, Ngn3 and MafA. Biochem J 2012; 442: 539–550.

    Article  CAS  Google Scholar 

  39. Dutton JR, Daughters RS, Chen Y, O’Neill KE, JMW Slack . Use of adenovirus for ectopic gene expression in xenopus. Dev Dyn 2009; 238: 1412–1421.

    Article  CAS  Google Scholar 

  40. Rerup CC . Drugs producing diabetes through damage to the insulin secreting cells. Pharmacol Rev 1970; 22: 485–518.

    CAS  PubMed  Google Scholar 

  41. Peters DH, Fitton A, Plosker GL, Faulds D . Tacrolimus—a review of its pharmacology, and therapeutic potential in hepatic and renal-transplantation. Drugs 1993; 46: 746–794.

    Article  CAS  Google Scholar 

  42. Brazelton TR, Morris RE . Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: Tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 1996; 8: 710–720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Cliff Steer for introducing us to the compounds causing liver hyperplasia and for useful discussions. This work was supported by a grant from the University of Minnesota Academic Health Center TRG 08-12 and by NIH grant R01DK080747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Banga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banga, A., Greder, L., Dutton, J. et al. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist. Gene Ther 21, 19–27 (2014). https://doi.org/10.1038/gt.2013.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.50

Keywords

This article is cited by

Search

Quick links