Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

De-targeting by miR-143 decreases unwanted transgene expression in non-tumorigenic cells

Abstract

MicroRNA dysregulation often results in the development and progression of cancer. miR-143 is ubiquitously expressed in most human and murine tissues but downregulated in many cancer types. This differential miRNA expression can be utilized for targeted cancer gene therapies. Multiple copies of the miR-143 complementary target sequence were inserted into the 3′UTR of plasmid vectors encoding either for different reporter genes or for the therapeutic gene TNFα. With these transgenes, we analyzed the miR-143-dependent gene expression in cancer cells and normal cells. Moreover, we investigated miR-143-regulated luciferase expression in an NMRI nude/HUH7 xenograft mouse model using a nonviral carrier system for in vivo transfections. We showed low and high levels of miR-143 in cancer cells and normal cells, respectively, leading to a differential gene expression of the reporters and the therapeutic TNFα. According to the miR-143 levels, the luciferase reporter gene expression was silenced in the mouse lungs but not in HUH7 tumors. Thus, we utilized the differential miR-143 expression in healthy and cancerous tissues to de-target the lung by specifically targeting the tumor in an in vivo HUH7 xenograft mouse model. The use of an miR-143-regulated therapeutic transgene may present a promising approach for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  2. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  Google Scholar 

  3. Iorio MV, Croce CM . MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–159.

    Article  CAS  Google Scholar 

  4. Kahlert C, Klupp F, Brand K, Lasitschka F, Diederichs S, Kirchberg J et al. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci 2011; 102: 1799–1807.

    Article  CAS  Google Scholar 

  5. Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S et al. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer 2012; 106: 1826–1832.

    Article  CAS  Google Scholar 

  6. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y . Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009; 77: 12–21.

    Article  CAS  Google Scholar 

  7. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  Google Scholar 

  8. Kent OA, Fox-Talbot K, Halushka MK. . RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 2013; 32: 2576–2585.

    Article  CAS  Google Scholar 

  9. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM . MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009; 276: 6689–6700.

    Article  CAS  Google Scholar 

  10. Kulda V, Pesta M, Topolcan O, Liska V, Treska V, Sutnar A et al. Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 2010; 200: 154–160.

    Article  CAS  Google Scholar 

  11. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer 2012; 11: 23.

    Article  Google Scholar 

  12. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. Plos One 2011; 6: e20341.

    Article  CAS  Google Scholar 

  13. Borralho PM, Simoes AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. Plos ONE 2011; 6: e23787.

    Article  CAS  Google Scholar 

  14. Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 2011; 10: 1470–1480.

    Article  CAS  Google Scholar 

  15. Lee CY, Rennie PS, Jia WW . MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin Cancer Res 2009; 15: 5126–5135.

    Article  CAS  Google Scholar 

  16. Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, Seymour LW . Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog 2009; 5: e1000440.

    Article  Google Scholar 

  17. Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC . A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16: 1437–1443.

    Article  CAS  Google Scholar 

  18. Kelly EJ, Nace R, Barber GN, Russell SJ . Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 2010; 84: 1550–1562.

    Article  CAS  Google Scholar 

  19. Perez JT, Pham AM, Lorini MH, Chua MA, Steel J, tenOever BR . MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 2009; 27: 572–576.

    Article  CAS  Google Scholar 

  20. Ylosmaki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K . Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA. J Virol 2008; 82: 11009–11015.

    Article  CAS  Google Scholar 

  21. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L . Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006; 12: 585–591.

    Article  CAS  Google Scholar 

  22. Kamrud KI, Coffield VM, Owens G, Goodman C, Alterson K, Custer M et al. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs. J Virol 2010; 84: 7713–7725.

    Article  CAS  Google Scholar 

  23. Lee TC, Lin YL, Liao JT, Su CM, Lin CC, Lin WP et al. Utilizing liver-specific microRNA-122 to modulate replication of dengue virus replicon. Biochem Biophys Res Commun 2010; 396: 596–601.

    Article  CAS  Google Scholar 

  24. Suzuki T, Sakurai F, Nakamura S, Kouyama E, Kawabata K, Kondoh M et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy. Mol Ther 2008; 16: 1719–1726.

    Article  CAS  Google Scholar 

  25. Rapp UR, Korn C, Ceteci F, Karreman C, Luetkenhaus K, Serafin V et al. MYC is a metastasis gene for non-small-cell lung cancer. Plos ONE 2009; 4: e6029.

    Article  Google Scholar 

  26. Magnusson T, Haase R, Schleef M, Wagner E, Ogris M . Sustained, high transgene expression in liver with plasmid vectors using optimized promoter-enhancer combinations. J Gene Med 2011; 13: 382–391.

    Article  CAS  Google Scholar 

  27. Su B, Cengizeroglu A, Farkasova K, Viola JR, Anton M, Ellwart JW et al. Systemic TNFalpha gene therapy synergizes with liposomal doxorubicine in the treatment of metastatic cancer. Mol Ther 2013; 21: 300–308.

    Article  CAS  Google Scholar 

  28. Russ V, Elfberg H, Thoma C, Kloeckner J, Ogris M, Wagner E . Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Ther 2008; 15: 18–29.

    Article  CAS  Google Scholar 

  29. Smrekar B, Wightman L, Wolschek MF, Lichtenberger C, Ruzicka R, Ogris M et al. Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Ther 2003; 10: 1079–1088.

    Article  CAS  Google Scholar 

  30. Klutz K, Schaffert D, Willhauck MJ, Grunwald GK, Haase R, Wunderlich N et al. Epidermal growth factor receptor-targeted (131)i-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Ther 2011; 19: 676–685.

    Article  CAS  Google Scholar 

  31. Schaffert D, Troiber C, Salcher EE, Frohlich T, Martin I, Badgujar N et al. Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 2011; 50: 8986–8989.

    Article  CAS  Google Scholar 

  32. Ogris M, Wagner E . To be targeted: is the magic bullet concept a viable option for synthetic nucleic acid therapeutics? Hum Gene Ther 2011; 22: 799–807.

    Article  CAS  Google Scholar 

  33. Peltier HJ, Latham GJ . Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008; 14: 844–852.

    Article  CAS  Google Scholar 

  34. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP . Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007; 3: 12.

    Article  Google Scholar 

  35. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  Google Scholar 

  36. Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M et al. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 2010; 10: 20.

    Article  Google Scholar 

  37. Navarro G, Maiwald G, Haase R, Rogach AL, Wagner E, de Ilarduya CT et al. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J Control Release 2010; 146: 99–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Ulf R Rapp and Dr Chitra Thakur for providing material from the SpC-c-MYC transgenic mouse model and Dr Andreas Wieser for providing the pRVmCherry construct. Moreover, we would like to thank Dr Arzu Cengizeroglu for performing the TNFα ELISA. This work was supported by the DFG grant no. OG 63/4–1 (M.O.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Roidl or M Ogris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopp, F., Schnoedt, M., Haase, R. et al. De-targeting by miR-143 decreases unwanted transgene expression in non-tumorigenic cells. Gene Ther 20, 1104–1109 (2013). https://doi.org/10.1038/gt.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.37

Keywords

This article is cited by

Search

Quick links