Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunotargeting and eradication of orthotopic melanoma using a chemokine-enhanced DNA vaccine

Abstract

DNA vaccines are attractive candidates for tumor immunotherapy. However, the potential of DNA vaccines in treating established malignant lesions has yet to be demonstrated. Here we demonstrate that transient alteration of either intratumoral or intradermal (ID) chemotactic gradients provide a favorable milieu for DNA vaccine-mediated activation of tumor-specific immune response in both prophylactic and therapeutic settings. Specifically, we show that priming of established B16 ID melanoma lesions via forced intratumoral expression of CCL21 boosted DNA vaccination-dependent systemic cytotoxic immune response leading to the regression of tumor nodules. In this setting, application of CCL20 was not effective likely due to the engagement of the regulatory T cells. However, priming of the skin at DNA vaccine administration sites outside the tumor bed with both CCL20 and CCL21 chemokines along with structural modifications of the DNA vaccine significantly improved vaccine efficacy. This optimized ID vaccination regimen led to the inhibition of distant established melanomas and prolonged tumor-free survival of mice observed in 60% of vaccinated animals with complete tumor remission in 30%. These effects were mediated by extranodal priming and activation of T cells at vaccine administration sites and progressive accumulation of systemic antigen-specific cytotoxic T cells (CTLs) on successive vaccinations. These results underscore the potential of chemokine-enhanced DNA vaccination to mount therapeutic immune response against established tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM . Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 2009; 58: 1–14.

    Article  CAS  Google Scholar 

  2. Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM et al. Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother 2010; 33: 840–847.

    Article  Google Scholar 

  3. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114: 535–546.

    Article  CAS  Google Scholar 

  4. Rosenberg SA, Dudley ME . Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009; 21: 233–240.

    Article  CAS  Google Scholar 

  5. Cameron F, Whiteside G, Perry C . Ipilimumab: first global approval. Drugs 2011; 71: 1093–1104.

    Article  Google Scholar 

  6. Gajewski TF . Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell Melanoma Res 2010; 23: 580–581.

    Article  Google Scholar 

  7. Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P . Ipilimumab. Nat Rev 2011; 10: 411–412.

    CAS  Google Scholar 

  8. Weber J . Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 2009; 58: 823–830.

    Article  CAS  Google Scholar 

  9. Wolchok JD, Weber JS, Hamid O, Lebbe C, Maio M, Schadendorf D et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun 2010; 10: 9.

    PubMed  PubMed Central  Google Scholar 

  10. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003; 9: 1284–1290.

    CAS  PubMed  Google Scholar 

  11. Slingluff CL Jr., Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 2007; 13: 6386–6395.

    Article  CAS  Google Scholar 

  12. Talebi T, Weber JS . Peptide vaccine trials for melanoma: preclinical background and clinical results. Sem Cancer Biol 2003; 13: 431–438.

    Article  CAS  Google Scholar 

  13. Hisada M, Yoshimoto T, Kamiya S, Magami Y, Miyaji H, Yoneto T et al. Synergistic antitumor effect by coexpression of chemokine CCL21/SLC and costimulatory molecule LIGHT. Cancer Gene Ther 2004; 11: 280–288.

    Article  CAS  Google Scholar 

  14. Kirk CJ, Hartigan-O'Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L et al. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 2001; 61: 2062–2070.

    CAS  PubMed  Google Scholar 

  15. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 2000; 164: 4558–4563.

    Article  CAS  Google Scholar 

  16. Mule JJ . Dendritic cell-based vaccines for pancreatic cancer and melanoma. Ann N Y Acad Sci 2009; 1174: 33–40.

    Article  CAS  Google Scholar 

  17. Terando A, Roessler B, Mule JJ . Chemokine gene modification of human dendritic cell-based tumor vaccines using a recombinant adenoviral vector. Cancer Gene Ther 2004; 11: 165–173.

    Article  CAS  Google Scholar 

  18. Novak L, Igoucheva O, Cho S, Alexeev V . Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 2007; 6: 1755–1764.

    Article  CAS  Google Scholar 

  19. Ferrone CR, Perales MA, Goldberg SM, Somberg CJ, Hirschhorn-Cymerman D, Gregor PD et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res 2006; 12: 5511–5519.

    Article  CAS  Google Scholar 

  20. Facco M, Baesso I, Miorin M, Bortoli M, Cabrelle A, Boscaro E et al. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. J Leukocyte Biol 2007; 82: 946–955.

    Article  CAS  Google Scholar 

  21. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 2007; 204: 2803–2812.

    Article  CAS  Google Scholar 

  22. Ichimura M, Hiratsuka K, Ogura N, Utsunomiya T, Sakamaki H, Kondoh T et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med 2006; 35: 167–174.

    Article  CAS  Google Scholar 

  23. Guo JH, Fan MW, Sun JH, Jia R . Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int Immunopharmacol 2009; 9: 925–930.

    Article  CAS  Google Scholar 

  24. Shih NY, Yang HY, Cheng HT, Hung YM, Yao YC, Zhu YH et al. Conditioning vaccination site with irradiated MIP-3alpha-transfected tumor cells enhances efficacy of dendritic cell-based cancer vaccine. J Immunother 2009; 32: 363–369.

    Article  CAS  Google Scholar 

  25. Manzo A, Bugatti S, Caporali R, Prevo R, Jackson DG, Uguccioni M et al. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol 2007; 171: 1549–1562.

    Article  CAS  Google Scholar 

  26. Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005; 35: 1347–1359.

    Article  CAS  Google Scholar 

  27. McDonald KG, McDonough JS, Wang C, Kucharzik T, Williams IR, Newberry RD . CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am J Pathol 2007; 170: 1229–1240.

    Article  CAS  Google Scholar 

  28. Park JY, Jin DH, Lee CM, Jang MJ, Lee SY, Shin HS et al. CD4+ TH1 cells generated by Ii-PADRE DNA at prime phase are important to induce effectors and memory CD8+ T cells. J Immunother 2010; 33: 510–522.

    Article  CAS  Google Scholar 

  29. Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E . A phase I trial of an HLA-A1 restricted MAGE-3 epitope peptide with incomplete Freund’s adjuvant in patients with resected high-risk melanoma. J Immunother 1999; 22: 431–440.

    Article  CAS  Google Scholar 

  30. BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ . Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 2002; 106: 113–121.

    Article  CAS  Google Scholar 

  31. del Guercio MF, Alexander J, Kubo RT, Arrhenius T, Maewal A, Appella E et al. Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine 1997; 15: 441–448.

    Article  CAS  Google Scholar 

  32. Wu A, Zeng Q, Kang TH, Peng S, Roosinovich E, Pai SI et al. Innovative DNA vaccine for human papillomavirus (HPV)-associated head and neck cancer. Gene Therapy 2011; 18: 304–312.

    Article  CAS  Google Scholar 

  33. Chan RC, Gutierrez B, Ichim TE, Lin F . Enhancement of DNA cancer vaccine efficacy by combination with anti-angiogenesis in regression of established subcutaneous B16 melanoma. Oncol Rep 2009; 22: 1197–1203.

    CAS  PubMed  Google Scholar 

  34. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA . Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science (New York, NY) 2010; 328: 749–752.

    Article  CAS  Google Scholar 

  35. Richmond A, Yang J, Su Y . The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res 2009; 22: 175–186.

    Article  CAS  Google Scholar 

  36. Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL . The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol 2004; 231: 75–84.

    Article  CAS  Google Scholar 

  37. Thompson ED, Enriquez HL, Fu YX, Engelhard VH . Tumor masses support naive T cell infiltration, activation, and differentiation into effectors. J Exp Med 2010; 207: 1791–1804.

    Article  CAS  Google Scholar 

  38. Chen YX, Man K, Ling GS, Chen Y, Sun BS, Cheng Q et al. A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J Immunol 2007; 179: 6009–6015.

    Article  CAS  Google Scholar 

  39. Demangel C, Bertolino P, Britton WJ . Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur J Immunol 2002; 32: 994–1002.

    Article  CAS  Google Scholar 

  40. Barath S, Aleksza M, Tarr T, Sipka S, Szegedi G, Kiss E . Measurement of natural (CD4+CD25high) and inducible (CD4+IL-10+) regulatory T cells in patients with systemic lupus erythematosus. Lupus 2007; 16: 489–496.

    Article  CAS  Google Scholar 

  41. Ohkusu-Tsukada K, Toda M, Udono H, Kawakami Y, Takahashi K . Targeted inhibition of IL-10-secreting CD25- Treg via p38 MAPK suppression in cancer immunotherapy. Eur J Immunol 2010; 40: 1011–1021.

    Article  CAS  Google Scholar 

  42. Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y . Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 1998; 58: 4895–4901.

    CAS  PubMed  Google Scholar 

  43. Rangel-Moreno J, Moyron-Quiroz JE, Hartson L, Kusser K, Randall TD . Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc Natl Acad Sci USA 2007; 104: 10577–10582.

    Article  CAS  Google Scholar 

  44. Reynolds SR, Celis E, Sette A, Oratz R, Shapiro RL, Johnston D et al. HLA-independent heterogeneity of CD8+ T cell responses to MAGE-3, Melan-A/MART-1, gp100, tyrosinase, MC1R, and TRP-2 in vaccine-treated melanoma patients. J Immunol 1998; 161: 6970–6976.

    CAS  PubMed  Google Scholar 

  45. Ghiorzo P, Pastorino L, Pizzichetta MA, Bono R, Queirolo P, Talamini R et al. CDKN2A and MC1R analysis in amelanotic and pigmented melanoma. Melanoma Res 2009; 19: 142–145.

    Article  CAS  Google Scholar 

  46. Wankowicz-Kalinska A, Mailliard RB, Olson K, Graham F, Edington H, Kirkwood JM et al. Accumulation of low-avidity anti-melanocortin receptor 1 (anti-MC1R) CD8+ T cells in the lesional skin of a patient with melanoma-related depigmentation. Melanoma Res 2006; 16: 165–174.

    Article  Google Scholar 

  47. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999; 400: 776–780.

    Article  CAS  Google Scholar 

  48. Curran MA, Montalvo W, Yagita H, JP Allison . PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107: 4275–4280.

    Article  CAS  Google Scholar 

  49. Kroumpouzos G, Urabe K, Kobayashi T, Sakai C, Hearing VJ . Functional analysis of the slaty gene product (TRP2) as dopachrome tautomerase and the effect of a point mutation on its catalytic function. Biochem Biophys Res Comm 1994; 202: 1060–1068.

    Article  CAS  Google Scholar 

  50. Skinner PJ, Daniels MA, Schmidt CS, Jameson SC, Haase AT . Cutting edge: in situ tetramer staining of antigen-specific T cells in tissues. J Immunol 2000; 165: 613–617.

    Article  CAS  Google Scholar 

  51. Jimenez M, Maloy WL, Hearing VJ . Specific identification of an authentic clone for mammalian tyrosinase. J Biol Chem 1989; 264: 3397–3403.

    CAS  PubMed  Google Scholar 

  52. Jimenez M, Tsukamoto K, Hearing VJ . Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J Biol Chem 1991; 266: 1147–1156.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs T Sato, S Waldman and L Eisenlohr for helpful discussions. This research was supported in part by: Thomas Jefferson University pilot grant, Melanoma Research Foundation grant, and Pennsylvania Department of Health grant SAP# 4100051723 to VA and the Commonwealth of Pennsylvania through the American College of Radiology and the Radiation Therapy Oncology Group to UR. Jefferson Medical College Dean’s Research Program provided support for DMK, ML, MF and JL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Alexeev.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igoucheva, O., Grazzini, M., Pidich, A. et al. Immunotargeting and eradication of orthotopic melanoma using a chemokine-enhanced DNA vaccine. Gene Ther 20, 939–948 (2013). https://doi.org/10.1038/gt.2013.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.17

Keywords

This article is cited by

Search

Quick links