Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Percutaneous gene therapy heals cranial defects

Abstract

Nonhealing bone defects are difficult to treat. As the bone morphogenic protein and transforming growth factor beta pathways have been implicated in bone healing, we hypothesized that percutaneous Smad7 silencing would enhance signaling through both pathways and improve bone formation. Critical sized parietal trephine defects were created and animals received percutaneous injection of: agarose alone or agarose containing nonsense or Smad7 small interfering RNA (siRNA). At 12 weeks, SMADs1, 2, 3, 5, 7 and 8 levels were assessed. Smad1/5/8 osteogenic target, Dlx5, and SMAD2/3 angiogenic target, plasminogen activator inhibitor-1 (Pai1), transcription levels were measured. Noncanonical signaling through TGFβ activated kinase-1 (Tak1) and target, runt-related transcription factor 2 (Runx2) and collagen1α1 (Col1α1), transcription were also measured. Micro-computed tomography and Gomori trichome staining were used to assess healing. Percutaneous injection of Smad7 siRNA significantly knocked down Smad7 mRNA (86.3±2.5%) and protein levels (46.3±3.1%). The SMAD7 knockdown resulted in a significant increase in receptor-regulated SMADs (R-SMAD) (Smad 1/5/8 and Smad2/3) nuclear translocation. R-SMAD nuclear translocation increased Dlx5 and Pai1 transcription. Additionally, noncanonical signaling through Tak1 increased Runx2 and Col1α1 target transcription. Compared with animals treated with agarose alone (33.9±2.8% healing) and nonsense siRNA (31.5±11.8% healing), animals treated Smad7 siRNA had significantly great (91.2±3.8%) healing. Percutaneous Smad7 silencing increases signal transduction through canonical and noncanonical pathways resulting in significant bone formation. Minimally invasive gene therapies may prove effective in the treatment of nonhealing bone defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Warren S, Fong K, Chen C, Loboa E, Cowan C, Lorenz H et al. Tools and techniques for craniofacial tissue engineering. Tissue Eng 2003; 9: 187–200.

    Article  CAS  Google Scholar 

  2. Szpalski C, Barr J, Wetterau M, Saadeh P, Warren S . Cranial bone defects: current and future strategies. Neurosurg Focus 2010; 29: E8.

    Article  Google Scholar 

  3. Bhumiratana S, Vunjak-Novakovic G . Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 2012; 1: 64–69.

    Article  CAS  Google Scholar 

  4. Tadros M, Costantino P . Advances in cranioplasty: a simplified algorithm to guide cranial reconstruction of acquired defects. Facial Plast Surg 2008; 24: 135–145.

    Article  CAS  Google Scholar 

  5. Massagué J, Seoane J, Wotton D . Smad transcription factors. Genes Dev 2005; 19: 2783–2810.

    Article  Google Scholar 

  6. Massagué J . Tgf-beta signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    Article  Google Scholar 

  7. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian J, Heuchel R et al. Identification of smad7, a tgfβ-inducible antagonist of tgf-β signaling. Nature 1997; 389: 631–635.

    Article  CAS  Google Scholar 

  8. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu Y, Grinnell B et al. The mad-related protein smad7 associates with the tgfβ receptor and functions as an antagonist of tgfβ signaling. Cell 1997; 89: 1165–1173.

    Article  CAS  Google Scholar 

  9. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M et al. Smad6 inhibits signaling by the tgf-β superfamily. Nature 1997; 389: 622–626.

    Article  CAS  Google Scholar 

  10. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A . Smad6 inhibits bmp/smad1 signaling by specifically competing with the smad4 tumor suppressor. Genes Dev 1998; 12: 186–197.

    Article  CAS  Google Scholar 

  11. Reddi A . Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am 2001; 1: S1–S6.

    Article  Google Scholar 

  12. Kawabata M, Imamura T, Miyazono K . Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998; 9: 49–61.

    Article  CAS  Google Scholar 

  13. Koh J, Zhao Z, Wang Z, Lewis I, Krebsbach PH, Francesch R . Combinatorial gene therapy with bmp2/7 enhances cranial bone regeneration. J Dent Res 2008; 87: 845–849.

    Article  CAS  Google Scholar 

  14. Yarnold J, Brotons M . Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 2010; 97: 149–161.

    Article  CAS  Google Scholar 

  15. Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T, Ten Dijke P . Localization of smads, the tgf-beta family intracellular signaling components during endochondral ossification. J Bone Min Res 1999; 14: 1145–1152.

    Article  CAS  Google Scholar 

  16. Janssens K, ten Dijke P, Janssens S, Van Hul W . Transforming growth factor-beta1 to the bone. Endocr Rev 2005; 26: 743–774.

    Article  CAS  Google Scholar 

  17. Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K . Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic mc3t3-e1 cells. J Bone Min Res 2002; 17: 1190–1199.

    Article  CAS  Google Scholar 

  18. Borton A, Frederick J, Datto M, Wang X, Weinstein R . The loss of smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res 2001; 16: 1754–1764.

    Article  CAS  Google Scholar 

  19. Greenblatt M, Shim J, Zou W, Sitara D, Schweitzer M, Hu D . The p38 mapk pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010; 120: 2457–2473.

    Article  CAS  Google Scholar 

  20. Kim S, Kwak J, Zachariah M, He Y, Wang L, Choi M . Tgf-beta-activated kinase 1 and tak1-binding protein 1 cooperate to mediate tgf-beta1-induced mkk3-p38 mapk activation and stimulation of type i collagen. Am J Physiol Renal Physiol 2007; 292: 1471–1478.

    Article  Google Scholar 

  21. Li H, Daculsi R, Bareille R, Bourget C, Amedee J . Upa and mmp-2 were involved in self-assembled network formation in a two dimensional co-culture model of bone marrow stromal cells and endothelial cells. J Cell Biochem 2013; 114: 650–657.

    Article  CAS  Google Scholar 

  22. Ebrahimian T, Squiban C, Roque T, Lugo-Martinez H, Hneino M, Buard V et al. Plasminogen activator inhibitor-1 controls bone marrow-derived cells therapeutic effect through mmp9 signaling: role in physiological and pathological wound healing. Stem Cells 2012; 30: 1436–1446.

    Article  CAS  Google Scholar 

  23. Zhang J, Lei T, Chen X, Peng Y, Long H, Zhou L et al. Resistin up-regulates cox-2 expression via tak1-ikk-nf-kappab signaling pathway. Inflammation 2010; 33: 25–33.

    Article  Google Scholar 

  24. Wang X, Allen RJ, Tutela J, Sailon A, Allor iA, Davidson E et al. Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast Reconstr Surg 2011; 128: 395–405.

    Article  CAS  Google Scholar 

  25. Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, Quarto N . A comparative analysis of the osteogenic effects of bmp-2, fgf-2, and vegfa in a calvarial defect model. Tissue Eng Part A 2012; 18: 1079–1086.

    Article  CAS  Google Scholar 

  26. Sultan SM, Davidson EH, Butala P, Schachar JS, Witek L, Szpalski C et al. Interval cranioplasty: comparison of current standards. Plast Reconstr Surg 2011; 127: 1855–1864.

    Article  CAS  Google Scholar 

  27. Wrana J, Attisano L, Wieser R, Ventura F, Massagué J . Mechanism of activation of the tgf-β receptor. Nature 1994; 370: 341–347.

    Article  CAS  Google Scholar 

  28. Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P et al. Smad7 is an activininducible inhibitor of activin-induced growth arrest and apoptosis in mouse b cells. J Biol Chem 1998; 273: 24293–24296.

    Article  CAS  Google Scholar 

  29. Benchabane H, Wrana J . Gata- and smad1-dependent enhancers in the smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol Cell Biol 2003; 23: 6646–6661.

    Article  CAS  Google Scholar 

  30. Kavsak P, Rasmussen R, Causing C, Bonni S, Zhu H, Thomsen G et al. Smad7 binds to smurf2 to form an e3 ubiquitin ligase that targets the tgfβ receptor for degradation. Mol Cell Biol 2000; 6: 1365–1375.

    CAS  Google Scholar 

  31. Suzuk iC, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T et al. Smurf1 regulates the inhibitory activity of smad7 by targeting smad7 to the plasma membrane. J Biol Chem 2002; 277: 39919–39925.

    Article  Google Scholar 

  32. Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T . Cooperative inhibition of bone morphogenetic protein signaling by smurf1 and inhibitory smads. Mol Biol Cell 2003; 14: 2809–2817.

    Article  CAS  Google Scholar 

  33. Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y et al. Chromosomal region maintenance 1 (crm1) dependent nuclear export of smad ubiquitin regulatory factor 1 (smurf1) is essential for negative regulation of transforming growth factor-β signaling by smad7. J Biol Chem 2003; 278: 10716–10721.

    Article  CAS  Google Scholar 

  34. Huse M, Muir T, Xu L, Chen Y, Kuriyan J, Massagué J . The tgf beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell Biol 2001; 8: 671–682.

    CAS  Google Scholar 

  35. Shi Y, Massagué J . Mechanisms of tgf-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    Article  CAS  Google Scholar 

  36. Xu L, Massagué J . Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 2004; 5: 209–219.

    Article  CAS  Google Scholar 

  37. Inman G, Hill C . Stoichiometry of active smad-transcription factor complexes on DNA. J Biol Chem 2002; 277: 51008–51016.

    Article  CAS  Google Scholar 

  38. Greenblatt M, Shim J, Glimcher L . Tak1 mediates bmp signaling in cartilage. Ann N Y Acad Sc 2010; 1192: 385–390.

    Article  CAS  Google Scholar 

  39. Afzal F, Pratap J, Ito K, Ito Y, Stein J, van Wijnen A . Smad function and intranuclear targeting share a runx2 motif required for osteogenic lineage induction and bmp2 responsive transcription. J Cell Physiol 2005; 204: 63–72.

    Article  CAS  Google Scholar 

  40. Castano-Izquierdo H, Alvarez-Barreto J, van den Dolder J, Jansen JA, Mikos AG, Sikavitsas VI . Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J Biomed Mater Res A 2007; 82: 129–138.

    Article  Google Scholar 

  41. Petrie Aronin CE, Sadik KW, Lay AL, Rion DB, Tholpady SS, Ogle RC et al. Comparative effects of scaffold pore size, pore volume, and total void volume on cranial bone healing patterns using microsphere-based scaffolds. J Biomed Mater Res A 2009; 89: 632–641.

    Article  Google Scholar 

  42. Srouji S, Ben-David D, Lotan R, Livne E, Avrahami R, Zussman E . Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng Part A 2011; 17: 269–277.

    Article  CAS  Google Scholar 

  43. Vigier S, Catania C, Baroukh B, Saffar JL, Giraud-Guille MM, Colombier ML . Dense fibrillar collagen matrices sustain osteoblast phenotype in vitro and promote bone formation in rat calvaria defect. Tissue Eng Part A 2011; 17: 889–898.

    Article  CAS  Google Scholar 

  44. Szpalski C, Nguyen PD, Cretiu Vasiliu CE, Chesnoiu-Matei I, Ricci JL, Clark E et al. Bony engineering using time-release porous scaffolds to provide sustained growth factor delivery. J Craniofac Surg 2012; 23: 638–644.

    Article  Google Scholar 

  45. Thanik V, Greives M, Lerman O, Seiser N, Dec W, Chang C et al. Topical matrix-based sirna silences local gene expression in a murine wound model. Gene Ther 2007; 14: 1305–1308.

    Article  CAS  Google Scholar 

  46. Lee J, Tutela J, Zoumalan R, Thanik V, Nguyen P, Varjabedian L et al. Inhibition of smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch Otolaryngol Head Neck Surg 2010; 136: 714–719.

    Article  Google Scholar 

  47. Corporation I. Agarose ultra pure, material safety data sheet Invitrogen Corporation. Carlsbad: CA, USA, 2005.

  48. Jiang M, Rubbi C, Milner J . Gel-based application of sirna to human epithelial cancer cells induces rnai-dependent apoptosis. Oligonucleotides 2004; 14: 239–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Warren.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Presented at the Northeastern Society of Plastic Surgeons 28th Annual Meeting, October 2011, Amelia Island, FL, USA. American Society of Plastic Surgery Annual Meeting September 2011, Denver, CO, USA. Awards: Outstanding Paper Presentation Award at the American Society of Plastic Surgery Annual Meeting, 2011 (awarded to JL)

Author contributions

JL and FS: conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript writing and final approval of manuscript; AW: collection and/or assembly of data, data analysis and interpretation and manuscript writing; AM, CS: collection and/or assembly of data and data analysis and interpretation; PBS, SMW: conception and design and final approval of manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layliev, J., Sagebin, F., Weinstein, A. et al. Percutaneous gene therapy heals cranial defects. Gene Ther 20, 922–929 (2013). https://doi.org/10.1038/gt.2013.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.15

Keywords

This article is cited by

Search

Quick links