Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biodistribution of lentiviral transduced adipose-derived stem cells for “ex-vivo” regional gene therapy for bone repair

Abstract

Ex-vivo gene therapy has been shown to be an effective method for treating bone defects in pre-clinical models. As gene therapy is explored as a potential treatment option in humans, an assessment of the safety profile becomes an important next step. The purpose of this study was to evaluate the biodistribution of viral particles at the defect site and various internal organs in a rat femoral defect model after implantation of human ASCs transduced with lentivirus (LV) with two-step transcriptional activation (TSTA) of bone morphogenetic protein-2 (LV-TSTA-BMP-2). Animals were sacrificed at 4-, 14-, 56-, and 84-days post implantation. The defects were treated with either a standard dose (SD) of 5 million cells or a high dose (HD) of 15 million cells to simulate a supratherapeutic dose. Treatment groups included (1) SD LV-TSTA-BMP-2 (2) HD LV-TSTA-BMP-2, (3) SD LV-TSTA-GFP (4) HD LV-TSTA-GFP and (5) SD nontransduced cells. The viral load at the defect site and ten organs was assessed at each timepoint. Histology of all organs, ipsilateral tibia, and femur were evaluated at each timepoint. There were nearly undetectable levels of LV-TSTA-BMP-2 transduced cells at the defect site at 84-days and no pathologic changes in any organ at all timepoints. In conclusion, human ASCs transduced with a lentiviral vector were both safe and effective in treating critical size bone defects in a pre-clinical model. These results suggest that regional gene therapy using lentiviral vector to treat bone defects has the potential to be a safe and effective treatment in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative Histology.
Fig. 2: Representative Radiograph and CT scan.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:192–5.

    Article  PubMed  CAS  Google Scholar 

  2. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–20.

    Article  PubMed  Google Scholar 

  3. Chan DS, Garland J, Infante A, Sanders RW, Sagi HC. Wound complications associated with bone morphogenetic protein-2 in orthopaedic trauma surgery. J Orthop Trauma. 2014;28:599–604.

    Article  PubMed  Google Scholar 

  4. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11:471–91.

    Article  PubMed  Google Scholar 

  5. Vakhshori V, Bougioukli S, Sugiyama O, Kang HP, Tang AH, Park SH, et al. Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone. 2020;138:115524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zuk P. Manual isolation of adipose-derived stem cells from human lipoaspirates. J Vis Exp. 2013;79:e50585.

    Google Scholar 

  7. Collon K, Bell JA, Gallo MC, Chang SW, Bougioukli S, Sugiyama O, et al. Influence of donor age and comorbidities on transduced human adipose-derived stem cell in vitro osteogenic potential. Gene Ther. 2022;30:369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alaee F, Bartholomae C, Sugiyama O, Virk MS, Drissi H, Wu Q, et al. Biodistribution of LV-TSTA transduced rat bone marrow cells used for "ex-vivo" regional gene therapy for bone repair. Curr Gene Ther. 2015;15:481–91.

    Article  PubMed  CAS  Google Scholar 

  9. Virk MS, Sugiyama O, Park SH, Gambhir SS, Adams DJ, Drissi H, et al. "Same day" ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol Ther. 2011;19:960–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA. 2001;98:14595–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42:921–31.

    Article  PubMed  CAS  Google Scholar 

  12. Ihn H, Kang H, Iglesias B, Sugiyama O, Tang A, Hollis R, et al. Regional gene therapy with transduced human cells: the influence of "cell dose" on bone repair. Tissue Eng Part A. 2021;27:1422–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of human adipose-derived stem cells for use in ex vivo regional gene therapy for bone repair. Hum Gene Ther Methods. 2018;29:269–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, et al. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheumatol. 2013;65:1786–94.

    Article  CAS  Google Scholar 

  15. Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, et al. Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med. 2016;5:1668–75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sensebe L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sanchez-Diaz M, Quinones-Vico MI, Sanabria de la Torre R, Montero-Vilchez T, Sierra-Sanchez A, Molina-Leyva A, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review. J Clin Med. 2021;10:2925.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol. 2006;2:e157.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics. 2012;28:755–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schroder ARW, Shinn P, Chen HM, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–9.

    Article  PubMed  CAS  Google Scholar 

  21. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2:E234.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007;17:1186–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang GP, Berry CC, Malani N, Leboulch P, Fischer A, Hacein-Bey-Abina S, et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood. 2010;115:4356–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, et al. INSPIIRED: a pipeline for quantitative analysis of sites of new dna integration in cellular genomes. Mol Ther Methods Clin Dev. 2017;4:39–49.

    Article  PubMed  CAS  Google Scholar 

  25. Berry CC, Nobles C, Six E, Wu Y, Malani N, Sherman E, et al. INSPIIRED: quantification and visualization tools for analyzing integration site distributions. Mol Ther Methods Clin Dev. 2017;4:17–26.

    Article  PubMed  CAS  Google Scholar 

  26. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 2011;7:e1001313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, et al. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med. 2009;15:1431–6.

    Article  PubMed  CAS  Google Scholar 

  28. Bougioukli S, Sugiyama O, Alluri RK, Yoho R, Oakes DA, Lieberman JR. In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther. 2018;25:260–8.

    Article  PubMed  CAS  Google Scholar 

  29. Bougioukli S, Evans CH, Alluri RK, Ghivizzani SC, Lieberman JR. Gene therapy to enhance bone and cartilage repair in orthopaedic surgery. Curr Gene Ther. 2018;18:154–70.

    Article  PubMed  CAS  Google Scholar 

  30. Alluri R, Jakus A, Bougioukli S, Pannell W, Sugiyama O, Tang A, et al. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: a novel approach to bone healing. J Biomed Mater Res A. 2018;106:1104–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Alluri R, Song X, Bougioukli S, Pannell W, Vakhshori V, Sugiyama O, et al. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A. 2019;107:2174–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gregson RL, Davey MJ, Prentice DE. Bronchus-associated lymphoid tissue (BALT) in the laboratory-bred and wild rat, Rattus norvegicus. Lab Anim. 1979;13:239–43.

    Article  PubMed  CAS  Google Scholar 

  33. Randall TD. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol. 2010;107:187–241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Binley K, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23:980–91.

    Article  PubMed  CAS  Google Scholar 

  35. Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther. 2001;8:1456–63.

    Article  PubMed  CAS  Google Scholar 

  36. Jimenez DF, Lee CI, O’Shea CE, Kohn DB, Tarantal AF. HIV-1-derived lentiviral vectors and fetal route of administration on transgene biodistribution and expression in rhesus monkeys. Gene Ther. 2005;12:821–30.

    Article  PubMed  CAS  Google Scholar 

  37. Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, et al. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther. 2014;21:139–47.

    Article  PubMed  CAS  Google Scholar 

  38. Choi KS, Ahn SY, Kim TS, Kim J, Kim BG, Han KH, et al. Characterization and biodistribution of human mesenchymal stem cells transduced with lentiviral-mediated BMP2. Arch Pharm Res. 2011;34:599–606.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JB, KC, and CM contributed to animal surgeries, study design, data analysis, and manuscript writing. SC, MG, OS, and AT contributed to study design, manuscript writing, cell preparation, organ harvest and ddPCR preparation. RH and DK contributed to study design, data interpretation, manuscript revision. SC contributed to study design, pathology preparation and interpretation, and manuscript review. JL contributed to study design, data analysis, manuscript review. All authors approved the final revision of this manuscript.

Corresponding author

Correspondence to Jennifer A. Bell.

Ethics declarations

Competing interests

Dr Lieberman’s work has been funded by the NIH. All other authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, J.A., Collon, K., Mayfield, C. et al. Biodistribution of lentiviral transduced adipose-derived stem cells for “ex-vivo” regional gene therapy for bone repair. Gene Ther 30, 826–834 (2023). https://doi.org/10.1038/s41434-023-00415-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00415-z

Search

Quick links