Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNAi-mediated gene silencing in tumour tissue using replication-competent retroviral vectors

Abstract

RNAi represents a powerful technology to specifically downregulate the expression of target genes. For cancer research and therapy, an efficient in vivo delivery system is supposed to distribute RNAi to all tumour cells upon systemic administration. We present replication-competent murine leukaemia virus (MLV) vectors, which deliver RNAi to tumour tissue upon tail vein injection. In HT1080 cells stably expressing GFP or luciferase, GFP expression was suppressed by more than 80% and luciferase (luc) activity by more than 90%, even when only 0.1% of the cells were initially infected with reporter gene specific vectors. To demonstrate its potential, PLK1- and MMP14-specific small hairpin RNA expression cassettes were applied in the system. Upon infection, PLK1 and MMP14 levels were reduced on mRNA and protein level. MLV-shPLK1-infected cells were arrested in the G2-phase and underwent apoptosis. MLV-shMMP14-infected cells showed reduced MMP2 activity, as well as substantially reduced invasion and tumour growth. In vivo, MLV-shLuc silenced luc expression in HT1080-luc tumour tissue by more than 80% and MLV-shPLK1 reduced tumour growth substantially, demonstrating the therapeutic relevance of this system. This RNAi vector system allows long-term downregulation of target gene expression as well as efficient delivery to and distribution throughout tumour tissue in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bumcrot D, Manoharan M, Koteliansky V, Sah DW . RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006; 2: 711–719.

    Article  CAS  Google Scholar 

  2. Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R et al. A status report on RNAi therapeutics. Silence 2010; 1: 14.

    Article  Google Scholar 

  3. Bartlett DW, Davis ME . Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 2006; 34: 322–333.

    Article  CAS  Google Scholar 

  4. Devincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci USA 2010; 107: 8800–8805.

    Article  CAS  Google Scholar 

  5. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Therapy 2006; 13: 225–234.

    Article  CAS  Google Scholar 

  6. Thakker DR, Natt F, Husken D, van der PH, Maier R, Hoyer D et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 2005; 10: 782–789; 714.

    Article  CAS  Google Scholar 

  7. de Fougerolles AR . Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 2008; 19: 125–132.

    Article  CAS  Google Scholar 

  8. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH . Delivery of RNA interference. Cell Cycle 2006; 5: 2103–2109.

    Article  CAS  Google Scholar 

  9. Tai CK, Kasahara N . Replication-competent retrovirus vectors for cancer gene therapy. Front Biosci 2008; 13: 3083–3095.

    Article  CAS  Google Scholar 

  10. Duerner LJ, Schwantes A, Schneider IC, Cichutek K, Buchholz CJ . Cell entry targeting restricts biodistribution of replication-competent retroviruses to tumour tissue. Gene Therapy 2008; 15: 1500–1510.

    Article  CAS  Google Scholar 

  11. Tai CK, Wang WJ, Chen TC, Kasahara N . Single-shot, multicycle suicide gene therapy by replication-competent retrovirus vectors achieves long-term survival benefit in experimental glioma. Mol Ther 2005; 12: 842–851.

    Article  CAS  Google Scholar 

  12. Tai CK, Wang W, Lai YH, Logg CR, Parker WB, Li YF et al. Enhanced efficiency of prodrug activation therapy by tumor-selective replicating retrovirus vectors armed with the Escherichia coli purine nucleoside phosphorylase gene. Cancer Gene Ther 2010; 17: 614–623.

    Article  CAS  Google Scholar 

  13. Wang WJ, Tai CK, Kasahara N, Chen TC . Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther 2003; 14: 117–127.

    Article  CAS  Google Scholar 

  14. Sliva K, Schnierle BS . Stable integration of a functional shRNA expression cassette into the murine leukemia virus genome. Virology 2006; 351: 218–225.

    Article  CAS  Google Scholar 

  15. Bauer M, Kinkl N, Meixner A, Kremmer E, Riemenschneider M, Forstl H et al. Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Therapy 2009; 16: 142–147.

    Article  CAS  Google Scholar 

  16. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B . Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004; 32: 1154–1158.

    Article  CAS  Google Scholar 

  17. Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 2007; 35: 5154–5164.

    Article  CAS  Google Scholar 

  18. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441: 537–541.

    Article  CAS  Google Scholar 

  19. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008; 105: 5868–5873.

    Article  CAS  Google Scholar 

  20. Holtrich U, Wolf G, Brauninger A, Karn T, Bohme B, Rubsamen-Waigmann H et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci USA 1994; 91: 1736–1740.

    Article  CAS  Google Scholar 

  21. Seiki M . Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 2003; 194: 1–11.

    Article  CAS  Google Scholar 

  22. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005; 37: 1281–1288.

    Article  CAS  Google Scholar 

  23. Zeng Y, Wagner EJ, Cullen BR . Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 2002; 9: 1327–1333.

    Article  CAS  Google Scholar 

  24. Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N . Genomic stability of murine leukemia viruses containing insertions at the Env-3′ untranslated region boundary. J Virol 2001; 75: 6989–6998.

    Article  CAS  Google Scholar 

  25. Corish P, Tyler-Smith C . Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 1999; 12: 1035–1040.

    Article  CAS  Google Scholar 

  26. Glover DM, Hagan IM, Tavares AA . Polo-like kinases: a team that plays throughout mitosis. Genes Dev 1998; 12: 3777–3787.

    Article  CAS  Google Scholar 

  27. Liu X, Erikson RL . Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA 2003; 100: 5789–5794.

    Article  CAS  Google Scholar 

  28. Nigg EA . Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 1998; 10: 776–783.

    Article  CAS  Google Scholar 

  29. Buchholz CJ, Peng KW, Morling FJ, Zhang J, Cosset FL, Russell SJ . In vivo selection of protease cleavage sites from retrovirus display libraries. Nat Biotechnol 1998; 16: 951–954.

    Article  CAS  Google Scholar 

  30. Devy L, Huang L, Naa L, Yanamandra N, Pieters H, Frans N et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 2009; 69: 1517–1526.

    Article  CAS  Google Scholar 

  31. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61–65.

    Article  CAS  Google Scholar 

  32. Subarsky P, Hill RP . Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells. Clin Exp Metastasis 2008; 25: 253–264.

    Article  CAS  Google Scholar 

  33. Atkinson SJ, Crabbe T, Cowell S, Ward RV, Butler MJ, Sato H et al. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 1995; 270: 30479–30485.

    Article  CAS  Google Scholar 

  34. Makinen PI, Koponen JK, Karkkainen AM, Malm TM, Pulkkinen KH, Koistinaho J et al. Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 2006; 8: 433–441.

    Article  CAS  Google Scholar 

  35. ter Brake O, Berkhout B . Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2007; 9: 743–750.

    Article  CAS  Google Scholar 

  36. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A . RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy 2005; 12: 461–466.

    Article  CAS  Google Scholar 

  37. Mahon KP, Love KT, Whitehead KA, Qin J, Akinc A, Leshchiner E et al. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery. Bioconjug Chem 2010; 21: 1448–1454.

    Article  CAS  Google Scholar 

  38. Dietzmann K, Kirches E, von B, Jachau K, Mawrin C . Increased human polo-like kinase-1 expression in gliomas. J Neurooncol 2001; 53: 1–11.

    Article  CAS  Google Scholar 

  39. Ueda J, Kajita M, Suenaga N, Fujii K, Seiki M . Sequence-specific silencing of MT1-MMP expression suppresses tumor cell migration and invasion: importance of MT1-MMP as a therapeutic target for invasive tumors. Oncogene 2003; 22: 8716–8722.

    Article  CAS  Google Scholar 

  40. Freudenberg JA, Chen WT . Induction of Smad1 by MT1-MMP contributes to tumor growth. Int J Cancer 2007; 121: 966–977.

    Article  CAS  Google Scholar 

  41. Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J 2002; 16: 555–564.

    Article  CAS  Google Scholar 

  42. Li SD, Chono S, Huang L . Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J Control Release 2008; 126: 77–84.

    Article  CAS  Google Scholar 

  43. Urban JH, Schneider RM, Compte M, Finger C, Cichutek K, Alvarez-Vallina L et al. Selection of functional human antibodies from retroviral display libraries. Nucleic Acids Res 2005; 33: e35.

    Article  Google Scholar 

  44. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  Google Scholar 

  45. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM et al. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 1995; 23: 628–633.

    Article  CAS  Google Scholar 

  46. Merten CA, Stitz J, Braun G, Poeschla EM, Cichutek K, Buchholz CJ . Directed evolution of retrovirus envelope protein cytoplasmic tails guided by functional incorporation into lentivirus particles. J Virol 2005; 79: 834–840.

    Article  CAS  Google Scholar 

  47. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R et al. Targeted cell entry of lentiviral vectors. Mol Ther 2008; 16: 1427–1436.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Plasmids encoding amphotropic MLV (pAZE-GFP) and ecotropic MLV (ZAPd-GFP) were kindly provided by Nori Kasahara (University of California, Los Angeles, US). We thank Kay-Martin Hanschmann for statistical analysis and Ralf R Tönjes for providing the β-actin plasmid. This work was supported by grant 107743 from the Deutsche Krebshilfe to BS and CJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Buchholz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaser, T., Wrede, C., Duerner, L. et al. RNAi-mediated gene silencing in tumour tissue using replication-competent retroviral vectors. Gene Ther 18, 953–960 (2011). https://doi.org/10.1038/gt.2011.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.48

Keywords

This article is cited by

Search

Quick links