Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver

Abstract

Ultrasound (US) combined with microbubbles (MBs) is a promising technology for non-viral gene delivery. Significant enhancements of gene expression have been obtained in our previous studies. To optimize and prepare for application to larger animal models, the luciferase reporter gene transfer efficacy of lipid-based Definity MBs of various concentrations, pressure amplitudes and a novel unfocused high-intensity therapeutic US (HITU) system were explored. Luciferase expression exhibited a dependence on MB dose over the range of 0–25 vol%, and a strong dependence on acoustic peak negative pressure at over the range of 0–3.2 MPa. Gene expression reached an apparent plateau at MB concentration 2.5 vol% or at negative pressures >1.8 MPa. Maximum gene expression in treated animals was 700-fold greater than in negative controls. Pulse train US exposure protocols produced an upward trend of gene expression with increasing quiescent time. The hyperbolic correlation of gene expression and transaminase levels suggested that an optimum gene delivery effect can be achieved by maximizing acoustic cavitation-induced enhancement of DNA uptake and minimizing unproductive tissue damage. This study validated the new HITU system equipped with an unfocused transducer with a larger footprint capable of scanning large tissue areas to effectively enhance gene transfer efficiencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Duvshani-Eshet M, Baruch L, Kesselman E, Shimoni E, Machluf M . Therapeutic ultrasound-mediated DNA to cell and nucleus: bioeffects revealed by confocal and atomic force microscopy. Gene Therapy 2006; 13: 163–172.

    Article  CAS  Google Scholar 

  2. Duvshani-Eshet M, Machluf M . Efficient transfection of tumors facilitated by long-term therapeutic ultrasound in combination with contrast agent: from in vitro to in vivo setting. Cancer Gene Ther 2007; 14: 306–315.

    Article  CAS  Google Scholar 

  3. Negishi Y, Omata D, Iijima H, Takabayashi Y, Suzuki K, Endo Y et al. Enhanced laminin-derived peptide AG73-mediated liposomal gene transfer by bubble liposomes and ultrasound. Mol Pharm 2009; 7: 217–226.

    Article  Google Scholar 

  4. Guo H, Leung JC, Chan LY, Tsang AW, Lam MF, Lan HY et al. Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Therapy 2007; 14: 1712–1720.

    Article  Google Scholar 

  5. Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z . Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Therapy 2008; 15: 257–266.

    Article  CAS  Google Scholar 

  6. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Sawamura K, Tanaka K et al. Tumor specific ultrasound enhanced gene transfer in vivo with novel liposomal bubbles. J Control Rel 2008; 125: 137–144.

    Article  CAS  Google Scholar 

  7. Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther 2005; 16: 893–905.

    Article  CAS  Google Scholar 

  8. Shen ZP, Brayman AA, Chen L, Miao CH . Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Therapy 2008; 15: 1147–1155.

    Article  CAS  Google Scholar 

  9. Deng CX, Sieling F, Pan H, Cui J . Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 2004; 30: 519–526.

    Article  Google Scholar 

  10. Pan H, Zhou Y, Izadnegahdar O, Cui J, Deng CX . Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med Biol 2005; 31: 849–856.

    Article  Google Scholar 

  11. Mehier-Humbert S, Bettinger T, Yan F, Guy RH . Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Rel 2005; 104: 213–222.

    Article  CAS  Google Scholar 

  12. Kamaev PP, Hutcheson JD, Wilson ML, Prausnitz MR . Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects. J Acoust Soc Am 2004; 115: 1818–1825.

    Article  CAS  Google Scholar 

  13. Cochran SA, Prausnitz MR . Sonoluminescence as an indicator of cell membrane disruption by acoustic cavitation. Ultrasound Med Biol 2001; 27: 841–850.

    Article  CAS  Google Scholar 

  14. Guzman HR, Nguyen DX, Khan S, Prausnitz MR . Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. J Acoust Soc Am 2001; 110: 597–606.

    Article  CAS  Google Scholar 

  15. Marmottant P, Hilgenfeldt S . Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003; 423: 153–156.

    Article  CAS  Google Scholar 

  16. van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Rel 2006; 112: 149–155.

    Article  CAS  Google Scholar 

  17. Brayman AA, Coppage ML, Vaidya S, Miller MW . Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHz ultrasound. Ultrasound Med Biol 1999; 25: 999–1008.

    Article  CAS  Google Scholar 

  18. Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO et al. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol 2004; 30: 1523–1529.

    Article  Google Scholar 

  19. Postema M, van Wamel A, ten Cate FJ, de Jong N . High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys 2005; 32: 3707–3711.

    Article  Google Scholar 

  20. Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ . Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 2011; 106: 034301.

  21. Wu J . Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med Biol 2002; 28: 125–129.

    Article  Google Scholar 

  22. Duvshani-Eshet M, Machluf M . Therapeutic ultrasound optimization for gene delivery: a key factor achieving nuclear DNA localization. J Control Rel 2005; 108: 513–528.

    Article  CAS  Google Scholar 

  23. Feril Jr LB, Ogawa R, Kobayashi H, Kikuchi H, Kondo T . Ultrasound enhances liposome-mediated gene transfection. Ultrason Sonochem 2005; 12: 489–493.

    Article  CAS  Google Scholar 

  24. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    Article  CAS  Google Scholar 

  25. Miller DL, Quddus J . Lysis and sonoporation of epidermoid and phagocytic monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies. Ultrasound Med Biol 2001; 27: 1107–1113.

    Article  CAS  Google Scholar 

  26. Miller DL, Quddus J . Diagnostic ultrasound-induced membrane damage in phagocytic cells loaded with contrast agent and its relation to Doppler-mode images. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 1094–1102.

    Article  Google Scholar 

  27. Sonoda S, Tachibana K, Uchino E, Okubo A, Yamamoto M, Sakoda K et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci 2006; 47: 558–564.

    Article  Google Scholar 

  28. Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H et al. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Therapy 2004; 11: 1532–1539.

    Article  CAS  Google Scholar 

  29. Shimamura M, Sato N, Taniyama Y, Kurinami H, Tanaka H, Takami T et al. Gene transfer into adult rat spinal cord using naked plasmid DNA and ultrasound microbubbles. J Gene Med 2005; 7: 1468–1474.

    Article  CAS  Google Scholar 

  30. Hynynen K, McDannold N, Martin H, Jolesz FA, Vykhodtseva N . The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison). Ultrasound Med Biol 2003a; 29: 473–481.

    Article  Google Scholar 

  31. Manome Y, Nakayama N, Nakayama K, Furuhata H . Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. Ultrasound Med Biol 2005; 31: 693–702.

    Article  Google Scholar 

  32. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA . Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl 2003b; 86: 555–558.

    CAS  PubMed  Google Scholar 

  33. Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761–771.

    Article  CAS  Google Scholar 

  34. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA 2006; 103: 8469–8474.

    Article  CAS  Google Scholar 

  35. Ohta S, Suzuki K, Tachibana K, Yamada G . Microbubble-enhanced sonoporation: efficient gene transduction technique for chick embryos. Genesis 2003; 37: 91–101.

    Article  CAS  Google Scholar 

  36. Nishida K, Doita M, Takada T, Kakutani K, Miyamoto H, Shimomura T et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 2006; 31: 1415–1419.

    Article  Google Scholar 

  37. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A . Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003; 14: 591–597.

    Article  CAS  Google Scholar 

  38. Nakaya H, Shimizu T, Isobe K, Tensho K, Okabe T, Nakamura Y et al. Microbubble-enhanced ultrasound exposure promotes uptake of methotrexate into synovial cells and enhanced antiinflammatory effects in the knees of rabbits with antigen-induced arthritis. Arthritis Rheum 2005; 52: 2559–2566.

    Article  CAS  Google Scholar 

  39. Enomoto S, Yoshiyama M, Omura T, Matsumoto R, Kusuyama T, Nishiya D et al. Microbubble destruction with ultrasound augments neovascularisation by bone marrow cell transplantation in rat hind limb ischaemia. Heart 2006; 92: 515–520.

    Article  CAS  Google Scholar 

  40. Yang L, Shirakata Y, Tamai K, Dai X, Hanakawa Y, Tokumaru S et al. Microbubble-enhanced ultrasound for gene transfer into living skin equivalents. J Dermatol Sci 2005; 40: 105–114.

    Article  CAS  Google Scholar 

  41. Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A . Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005; 12: 884–889.

    Article  CAS  Google Scholar 

  42. Hosseinkhani H, Tabata Y . Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Control Rel 2005; 108: 540–556.

    Article  CAS  Google Scholar 

  43. Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 2005; 236: 572–578.

    Article  Google Scholar 

  44. Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology 2005; 235: 541–546.

    Article  Google Scholar 

  45. Bekeredjian R, Chen S, Grayburn PA, Shohet RV . Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med Biol 2005; 31: 687–691.

    Article  Google Scholar 

  46. Kodama T, Tan PH, Offiah I, Partridge T, Cook T, George AJ et al. Delivery of oligodeoxynucleotides into human saphenous veins and the adjunct effect of ultrasound and microbubbles. Ultrasound Med Biol 2005; 31: 1683–1691.

    Article  Google Scholar 

  47. Korpanty G, Chen S, Shohet RV, Ding J, Yang B, Frenkel PA et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Therapy 2005; 12: 1305–1312.

    Article  CAS  Google Scholar 

  48. Mizuno Y, Iwata H, Takagi H, Yoshikawa S, Umeda Y, Matsuno Y et al. Sonoporation with doxorubicin enhances suppression of intimal hyperplasia in a vein graft model. J Surg Res 2005; 124: 312–317.

    Article  CAS  Google Scholar 

  49. Zen K, Okigaki M, Hosokawa Y, Adachi Y, Nozawa Y, Takamiya M et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 2006; 40: 799–809.

    Article  CAS  Google Scholar 

  50. Huber PE, Mann MJ, Melo LG, Ehsan A, Kong D, Zhang L et al. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Therapy 2003; 10: 1600–1607.

    Article  CAS  Google Scholar 

  51. Pislaru SV, Pislaru C, Kinnick RR, Singh R, Gulati R, Greenleaf JF et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690–1698.

    Article  CAS  Google Scholar 

  52. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Therapy 2002; 9: 372–380.

    Article  CAS  Google Scholar 

  53. Lu QL, Liang HD, Partridge T, Blomley MJ . Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Therapy 2003; 10: 396–405.

    Article  CAS  Google Scholar 

  54. Wang X, Liang HD, Dong B, Lu QL, Blomley MJ . Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology 2005; 237: 224–229.

    Article  Google Scholar 

  55. Suzuki R, Maruyama K . Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure. Methods Mol Biol 2010; 605: 473–486.

    Article  CAS  Google Scholar 

  56. Duvshani-Eshet M, Adam D, Machluf M . The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J Control Rel 2006; 112: 156–166.

    Article  CAS  Google Scholar 

  57. Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Rel 2008; 132: 124–130.

    Article  CAS  Google Scholar 

  58. Stride E, Porter C, Prieto AG, Pankhurst Q . Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol 2009; 35: 861–868.

    Article  Google Scholar 

  59. Rahim A, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD . Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound Med Biol 2006; 32: 1269–1279.

    Article  Google Scholar 

  60. Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Therapy 2000; 7: 1833–1839.

    Article  CAS  Google Scholar 

  61. Unger EC, Hersh E, Vannan M, McCreery T . Gene delivery using ultrasound contrast agents. Echocardiography 2001; 18: 355–361.

    Article  CAS  Google Scholar 

  62. Vannan M, McCreery T, Li P, Han Z, Unger E, Kuersten B et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr 2002; 15: 214–218.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by R01 (R01 HL69049) and R21 (R21 HL089038) Grants from NIH-NHLBI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Miao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Shen, Z., Chen, L. et al. Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther 18, 1006–1014 (2011). https://doi.org/10.1038/gt.2011.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.34

Keywords

This article is cited by

Search

Quick links