Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Use of cytokine immunotherapy to block CNS demyelination induced by a recombinant HSV-1 expressing IL-2

Abstract

We previously have described a model of multiple sclerosis (MS) in which constitutive expression of murine interleukin (IL)-2 by herpes simplex virus type 1 (HSV-1) (HSV-IL-2) causes central nervous system (CNS) demyelination in different strains of mice. In the current study, we investigated whether this HSV-IL-2-induced demyelination can be blocked using recombinant viruses expressing different cytokines or by injection of plasmid DNA. We have found that coinfection of HSV-IL-2-infected mice with recombinant viruses expressing IL-12p35, IL-12p40 or IL-12p35+IL-12p40 did not block the CNS demyelination, and that coinfection with a recombinant virus expressing interferon (IFN)-γ exacerbated it. In contrast, coinfection with a recombinant virus expressing IL-4 reduced demyelination, whereas coinfection of HSV-IL-2-infected mice with a recombinant HSV-1 expressing the IL-12 heterodimer (HSV-IL-12p70) blocked the CNS demyelination in a dose-dependent manner. Similarly, injection of IL-12p70 DNA blocked HSV-IL-2-induced CNS demyelination in a dose-dependent manner and injection of IL-35 DNA significantly reduced CNS demyelination. Injection of mice with IL-12p35 DNA, IL-12p40 DNA, IL-12p35+IL-12p40 DNA or IL-23 DNA did not have any effect on HSV-IL-2-induced demyelination, whereas injection of IL-27 DNA increased the severity of the CNS demyelination in the HSV-IL-2-infected mice. This study demonstrates for the first time that IL-12p70 can block HSV-IL-2-induced CNS demyelination and that IL-35 can also reduce this demyelination, whereas IFN-γ and IL-27 exacerbated the demyelination in the CNS of the HSV-IL-2-infected mice. Our results suggest a potential role for IL-12p70 and IL-35 signaling in the inhibition of HSV-IL-2-induced immunopathology by preventing development of autoaggressive T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Martin R, McFarland HF, McFarlin DE . Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153–187.

    Article  CAS  Google Scholar 

  2. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG . Multiple sclerosis. N Engl J Med 2000; 343: 938–952.

    Article  CAS  Google Scholar 

  3. Hunter SF, Weinshenker BG, Carter JL, Noseworthy JH . Rational clinical immunotherapy for multiple sclerosis. Mayo Clin Proc 1997; 72: 765–780.

    Article  CAS  Google Scholar 

  4. Soderstrom M, Ya-Ping J, Hillert J, Link H . Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings. Neurology 1998; 50: 708–714.

    Article  CAS  Google Scholar 

  5. Sandberg-Wollheim M, Bynke H, Cronqvist S, Holtas S, Platz P, Ryder LP . A long-term prospective study of optic neuritis: evaluation of risk factors. Ann Neurol 1990; 27: 386–393.

    Article  CAS  Google Scholar 

  6. Rodriguez M, Siva A, Cross SA, O′Brien PC, Kurland LT . Optic neuritis: a population-based study in Olmsted County, Minnesota. Neurology 1995; 45: 244–250.

    Article  CAS  Google Scholar 

  7. O′Riordan JI, Losseff NA, Phatouros C, Thompson AJ, Moseley IF, MacManus DG et al. Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J Neurol Neurosurg Psychiatry 1998; 64: 353–357.

    Article  Google Scholar 

  8. Ghezzi A, Martinelli V, Torri V, Zaffaroni M, Rodegher M, Comi G et al. Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol 1999; 246: 770–775.

    Article  CAS  Google Scholar 

  9. Lu CZ, Fredrikson S, Xiao BG, Link H . Interleukin-2 secreting cells in multiple sclerosis and controls. J Neurol Sci 1993; 120: 99–106.

    Article  CAS  Google Scholar 

  10. Gallo P, Piccinno M, Pagni S, Tavolato B . Interleukin-2 levels in serum and cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 1988; 24: 795–797.

    Article  CAS  Google Scholar 

  11. Gallo P, Piccinno MG, Pagni S, Argentiero V, Giometto B, Bozza F et al. Immune activation in multiple sclerosis: study of IL-2, sIL-2R, and gamma-IFN levels in serum and cerebrospinal fluid. J Neurol Sci 1989; 92: 9–15.

    Article  CAS  Google Scholar 

  12. Trotter JL, Clifford DB, McInnis JE, Griffeth RC, Bruns KA, Perlmutter MS et al. Correlation of immunological studies and disease progression in chronic progressive multiple sclerosis. Ann Neurol 1989; 25: 172–178.

    Article  CAS  Google Scholar 

  13. Petitto JM, Streit WJ, Huang Z, Butfiloski E, Schiffenbauer J . Interleukin-2 gene deletion produces a robust reduction in susceptibility to experimental autoimmune encephalomyelitis in C57BL/6 mice. Neurosci Lett 2000; 285: 66–70.

    Article  CAS  Google Scholar 

  14. Ghiasi H, Osorio Y, Perng GC, Nesburn AB, Wechsler SL . Overexpression of interleukin-2 by a recombinant herpes simplex virus type 1 attenuates pathogenicity and enhances antiviral immunity. J Virol 2002; 76: 9069–9078.

    Article  CAS  Google Scholar 

  15. Ghiasi H, Osorio Y, Hedvat Y, Perng GC, Nesburn AB, Wechsler SL . Infection of BALB/c mice with a herpes simplex virus type 1 recombinant virus expressing IFN-g driven by the LAT promoter. Virology 2002; 302: 144–154.

    Article  CAS  Google Scholar 

  16. Osorio Y, Sharifi BG, Perng G, Ghiasi NS, Ghiasi H . The role of T(H)1 and T(H)2 cytokines in HSV-1-induced corneal scarring. Ocul Immunol Inflamm 2002; 10: 105–116.

    Article  CAS  Google Scholar 

  17. Ghiasi H, Osorio Y, Perng GC, Nesburn AB, Wechsler SL . Recombinant herpes simplex virus type 1 expressing murine interleukin-4 is less virulent than wild-type virus in mice. J Virol 2001; 75: 9029–9036.

    Article  CAS  Google Scholar 

  18. Parker JN, Pfister LA, Quenelle D, Gillespie GY, Markert JM, Kern ER et al. Genetically engineered herpes simplex viruses that express IL-12 or GM-CSF as vaccine candidates. Vaccine 2006; 24: 1644–1652.

    Article  CAS  Google Scholar 

  19. Osorio Y, La Point SF, Nusinowitz S, Hofman FM, Ghiasi H . CD8+-dependent CNS demyelination following ocular infection of mice with a recombinant HSV-1 expressing murine IL-2. Exp Neurol 2005; 193: 1–18.

    Article  CAS  Google Scholar 

  20. Zandian M, Belisle R, Mott KR, Nusinowitz S, Hofman FM, Ghiasi H . Optic neuritis in different strains of mice by a recombinant HSV-1 expressing murine interleukin-2. Invest Ophthalmol Vis Sci 2009; 50: 3275–3282.

    Article  Google Scholar 

  21. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O′Garra A, Murphy KM . Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–549.

    Article  CAS  Google Scholar 

  22. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995; 154: 5071–5079.

    CAS  PubMed  Google Scholar 

  23. Guler ML, Gorham JD, Hsieh CS, Mackey AJ, Steen RG, Dietrich WF et al. Genetic susceptibility to Leishmania: IL-12 responsiveness in TH1 cell development. Science 1996; 271: 984–987.

    Article  CAS  Google Scholar 

  24. Hsieh CS, Heimberger AB, Gold JS, O'Garra A, Murphy KM . Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci USA 1992; 89: 6065–6069.

    Article  CAS  Google Scholar 

  25. Abehsira-Amar O, Gibert M, Joliy M, Theze J, Jankovic DL . IL-4 plays a dominant role in the differential development of Tho into Th1 and Th2 cells. J Immunol 1992; 148: 3820–3829.

    CAS  PubMed  Google Scholar 

  26. Poliani PL, Brok H, Furlan R, Ruffini F, Bergami A, Desina G et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001; 12: 905–920.

    Article  CAS  Google Scholar 

  27. Furlan R, Poliani PL, Marconi PC, Bergami A, Ruffini F, Adorini L et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther 2001; 8: 13–19.

    Article  CAS  Google Scholar 

  28. Broberg E, Setala N, Roytta M, Salmi A, Eralinna JP, He B et al. Expression of interleukin-4 but not of interleukin-10 from a replicative herpes simplex virus type 1 viral vector precludes experimental allergic encephalomyelitis. Gene Ther 2001; 8: 769–777.

    Article  CAS  Google Scholar 

  29. Panitch HS, Hirsch RL, Schindler J, Johnson KP . Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097–1102.

    Article  CAS  Google Scholar 

  30. Osorio Y, Ghiasi H . Recombinant herpes simplex virus type 1 (HSV-1) codelivering interleukin-12p35 as a molecular adjuvant enhances the protective immune response against ocular HSV-1 challenge. J Virol 2005; 79: 3297–3308.

    Article  CAS  Google Scholar 

  31. Kahl KG, Kruse N, Toyka KV, Rieckmann P . Serial analysis of cytokine mRNA profiles in whole blood samples from patients with early multiple sclerosis. J Neurol Sci 2002; 200: 53–55.

    Article  CAS  Google Scholar 

  32. Racke MK, Burnett D, Pak SH, Albert PS, Cannella B, Raine CS et al. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol 1995; 154: 450–458.

    CAS  PubMed  Google Scholar 

  33. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J . A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 2001; 194: 669–676.

    Article  CAS  Google Scholar 

  34. D'Andrea A, Rengaraju M, Valiante NM, Chehimi J, Kubin M, Aste M et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 1992; 176: 1387–1398.

    Article  CAS  Google Scholar 

  35. Schwarz T . Interleukin-12 and its role in cutaneous sensitization. Res Immunol 1995; 146: 494–499.

    Article  CAS  Google Scholar 

  36. Giri M, Ugen KE, Weiner DB . DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clin Microbiol Rev 2004; 17: 370–389.

    Article  CAS  Google Scholar 

  37. Koehler NK, Genain CP, Giesser B, Hauser SL . The human T cell response to myelin oligodendrocyte glycoprotein: a multiple sclerosis family-based study. J Immunol 2002; 168: 5920–5927.

    Article  CAS  Google Scholar 

  38. Karp CL, van Boxel-Dezaire AH, Byrnes AA, Nagelkerken L . Interferon-beta in multiple sclerosis: altering the balance of interleukin-12 and interleukin-10? Curr Opin Neurol 2001; 14: 361–368.

    Article  CAS  Google Scholar 

  39. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002; 169: 7104–7110.

    Article  CAS  Google Scholar 

  40. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421: 744–748.

    Article  CAS  Google Scholar 

  41. Boulay JL, O'Shea JJ, Paul WE . Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 2003; 19: 159–163.

    Article  CAS  Google Scholar 

  42. Goriely S, Goldman M . Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant 2008; 13: 4–9.

    Article  Google Scholar 

  43. Bancroft AJ, Humphreys NE, Worthington JJ, Yoshida H, Grencis RK . WSX-1: a key role in induction of chronic intestinal nematode infection. J Immunol 2004; 172: 7635–7641.

    Article  CAS  Google Scholar 

  44. Miyazaki Y, Inoue H, Matsumura M, Matsumoto K, Nakano T, Tsuda M et al. Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice. J Immunol 2005; 175: 2401–2407.

    Article  CAS  Google Scholar 

  45. Wirtz S, Tubbe I, Galle PR, Schild HJ, Birkenbach M, Blumberg RS et al. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med 2006; 203: 1875–1881.

    Article  CAS  Google Scholar 

  46. Neufert C, Becker C, Wirtz S, Fantini MC, Weigmann B, Galle PR et al. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol 2007; 37: 1809–1816.

    Article  CAS  Google Scholar 

  47. Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K . IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol 2007; 179: 4415–4423.

    Article  CAS  Google Scholar 

  48. Kastelein RA, Hunter CA, Cua DJ . Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25: 221–242.

    Article  CAS  Google Scholar 

  49. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450: 566–569.

    Article  CAS  Google Scholar 

  50. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 2007; 37: 3021–3029.

    Article  CAS  Google Scholar 

  51. Ghiasi H, Wechsler SL, Kaiwar R, Nesburn AB, Hofman FM . Local expression of tumor necrosis factor alpha and interleukin-2 correlates with protection against corneal scarring after ocular challenge of vaccinated mice with herpes simplex virus type 1. J Virol 1995; 69: 334–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Osorio Y, Cohen J, Ghiasi H . Improved protection from primary ocular HSV-1 infection and establishment of latency using multigenic DNA vaccines. Invest Ophthalmol Vis Sci 2004; 45: 506–514.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service grant EY15557 from the National Eye Institute. We thank Dr James M Markert Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham for providing the M002 (HSV-IL-12p70) virus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Ghiasi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandian, M., Mott, K., Allen, S. et al. Use of cytokine immunotherapy to block CNS demyelination induced by a recombinant HSV-1 expressing IL-2. Gene Ther 18, 734–742 (2011). https://doi.org/10.1038/gt.2011.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.32

Keywords

This article is cited by

Search

Quick links