Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse

Abstract

We hypothesized that lectin-like oxidized LDL receptor-1 (LOX-1) deletion may inhibit oxidative stress signals, reduce collagen accumulation and attenuate cardiac remodeling after chronic ischemia. Activation of LOX-1 plays a significant role in the development of inflammation, apoptosis and collagen signals during acute ischemia. Wild-type and LOX-1 knockout (KO) mice were subjected to occlusion of left coronary artery for 3 weeks. Markers of cardiac hypertrophy, fibrosis-related signals (collagen IV, collagen-1 and fibronectin) and oxidant load (nicotinamide adenine dinucleotide phosphate oxidase expression, activity of mitogen-activated protein kinases and left ventricular (LV) tissue thiobarbituric acid reactive substances) were analyzed. In in vitro experiments, HL-1 cardiomyocytes were transfected with angiotensin II (Ang II) type 1 receptor (AT1R) or type 2 receptor (AT2R) genes to determine their role in the cardiomyocyte hypertrophy. LOX-1 KO mice had 25% improvement in survival over the 3-week period of chronic ischemia. LOX-1 deletion reduced collagen deposition and cardiomyocyte hypertrophy (75%) in association with a decrease in oxidant load and AT1R upregulation (all P<0.05). The LOX-1 KO mice hearts exhibited a disintegrin and metalloproteinase 10 (ADAM10) and a disintegrin and metalloproteinase 17 (ADAM17) expression and matrix metalloproteinase 2 activity, and increased AT2R expression (P<0.05). Attenuation of cardiac remodeling was associated with improved cardiac hemodynamics (LV ±dp/dt and cardiac ejection fraction). In vitro studies showed that it is AT1R, and not AT2R overexpression that induces cardiomyocyte hypertrophy. We demonstrate for the first time that LOX-1 deletion reduces oxidative stress and related intracellular signaling, which leads to attenuation of the positive feedback loop involving AT1R and LOX-1. This results in reduced chronic cardiac remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ADAM:

a disintegrin and metalloproteinase

Ang II:

angiotensin II

AT1R:

angiotensin II type 1 receptor

AT2R:

angiotensin II type 2 receptor

KO:

knockout

LCA:

left coronary artery

LOX-1:

lectin-like oxidized LDL receptor-1

LV:

left ventricle

LVIDd:

left ventricular internal diameter in diastole

LVIDs:

left ventricular internal diameter in systole

MAPK:

mitogen-activated protein kinase

MDA:

malondialdehyde

MI:

myocardial infarct

MMP:

matrix metalloproteinase

NADPH:

nicotinamide adenine dinucleotide phosphate

NF-κB:

nuclear factor-kappaB

ROS:

reactive oxygen species

SAPK/JNK:

stress-activated protein kinase/c-Jun NH2-terminal kinase

TBARS:

thiobarbituric acid-reactive substances

References

  1. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J . The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 2009; 54: 1747–1762.

    Article  CAS  Google Scholar 

  2. Braunwald E . Biomarkers in heart failure. N Engl J Med 2008; 358: 2148–2159.

    Article  CAS  Google Scholar 

  3. Sorescu D, Griendling KK . Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002; 8: 132–140.

    Article  CAS  Google Scholar 

  4. Liu X, Gai Y, Liu F, Gao W, Zhang Y, Xu M et al. Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway. Cardiovasc Res 2010; 88: 150–158.

    Article  CAS  Google Scholar 

  5. Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM et al. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 2007; 100: 894–903.

    Article  CAS  Google Scholar 

  6. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M et al. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-B through an increased production of intracellular reactive oxygen species. J Biol Chem 2000; 275: 12633–12638.

    Article  CAS  Google Scholar 

  7. Li D, Saldeen T, Romeo F, Mehta JL . Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation 2000; 102: 1970–1976.

    Article  CAS  Google Scholar 

  8. Iwai-Kanai E, Hasegawa K, Sawamura T, Fujita M, Yanazume T, Toyokuni S et al. Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. Circulation 2001; 104: 2948–2954.

    Article  CAS  Google Scholar 

  9. Li D, Williams V, Liu L, Chen H, Sawamura T, Romeo F et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia–reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol 2003; 41: 1048–1055.

    Article  CAS  Google Scholar 

  10. Hu C, Dandapat A, Chen J, Fujita Y, Inoue N, Kawase Y et al. LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia–reperfusion. Cardiovasc Res 2007; 76: 292–302.

    Article  CAS  Google Scholar 

  11. Yue H, Li W, Desnoyer R, Karnik SS . Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovasc Res 2010; 85: 90–99.

    Article  CAS  Google Scholar 

  12. Oishi Y, Ozono R, Yano Y, Teranishi Y, Akishita M, Horiuchi M et al. Cardioprotective role of AT2 receptor in post-infarction left ventricular remodeling. Hypertension 2003; 41: 814–818.

    Article  CAS  Google Scholar 

  13. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G . Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 2006; 69: 36–45.

    Article  CAS  Google Scholar 

  14. Li D, Mehta JL . Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 2000; 101: 2889–2895.

    Article  CAS  Google Scholar 

  15. Chen J, Liu Y, Liu H, Hermonat PL, Mehta JL . Molecular dissection of angiotensin II-activated human LOX-1 promoter. Arterioscler Thromb Vasc Biol 2006; 26: 1163–1168.

    Article  CAS  Google Scholar 

  16. Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ Cardiovasc Imag 2010; 3: 464–472.

    Article  CAS  Google Scholar 

  17. Kang BY, Mehta JL . Rosuvastatin attenuates Ang II—mediated cardiomyocyte hypertrophy via inhibition of LOX-1. J Cardiovasc Pharmacol Ther 2009; 14: 283–291.

    Article  CAS  Google Scholar 

  18. Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL et al. Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 2008; 283: 10226–10231.

    Article  CAS  Google Scholar 

  19. Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy LM et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proc Natl Acad Sci 2003; 100: 1274–1279.

    Article  CAS  Google Scholar 

  20. Ainscough JF, Drinkhill MJ, Sedo A, Turner NA, Brooke DA, Balmforth AJ et al. Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction. Cardiovasc Res 2009; 81: 592–600.

    Article  CAS  Google Scholar 

  21. Kang BY, Hu C, Ryu S, Biancolella M, Prayaga S, Seung KB et al. Genomics of cardiac remodeling in angiotensin II-treated wild-type and LOX-1-deficient mice. Physiol Genom 2010; 42: 42–54.

    Article  CAS  Google Scholar 

  22. Aliskiren in Left Ventricular Hypertrophy (ALLAY) Trial Investigators. Effect of the direct renin inhibitor aliskiren, the angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy. Circulation 2009; 119: 530–537.

    Article  Google Scholar 

  23. Hu C, Dandapat A, Chen J, Liu Y, Hermonat PL, Carey RM et al. Over-expression of angiotensin II type 2 receptor (agtr2) reduces atherogenesis and modulates LOX-1, endothelial nitric oxide synthase and heme-oxygenase-1 expression. Atherosclerosis 2008; 199: 288–294.

    Article  CAS  Google Scholar 

  24. Dandapat A, Hu CP, Chen J, Liu Y, Khan JA, Remeo F et al. Over-expression of angiotensin II type 2 receptor (agtr2) decreases collagen accumulation in atherosclerotic plaque. Biochem Biophys Res Commun 2008; 366: 871–877.

    Article  CAS  Google Scholar 

  25. Chen K, Chen J, Li D, Zhang X, Mehta JL . Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension 2004; 44: 655–661.

    Article  CAS  Google Scholar 

  26. Chen K, Li D, Zhang X, Hermonat PL, Mehta JL . Anoxia–reoxygenation stimulates collagen type-I and MMP-1 expression in cardiac fibroblasts: modulation by the PPAR-gamma ligand pioglitazone. J Cardiovasc Pharmacol 2004; 44: 682–687.

    Article  CAS  Google Scholar 

  27. Chen K, Chen J, Liu Y, Xie J, Li D, Sawamura T et al. Adhesion molecule expression in fibroblasts: alteration in fibroblast biology after transfection with LOX-1 plasmids. Hypertension 2005; 46: 622–627.

    Article  CAS  Google Scholar 

  28. Franzke CW, Bruckner-Tuderman L, Blobel CP . Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J Biol Chem 2009; 284: 23386–23396.

    Article  CAS  Google Scholar 

  29. Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P et al. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 2008; 102: 1192–1201.

    Article  CAS  Google Scholar 

  30. Weskamp G, Mendelson K, Swendeman S, Le Gall S, Ma Y, Lyman S et al. Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res 2010; 106: 932–940.

    Article  CAS  Google Scholar 

  31. Chen J, Li D, Schaefer R, Mehta JL . Cross-talk between dyslipidemia and renin–angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies with the combined use of rosuvastatin and candesartan. Atherosclerosis 2006; 184: 295–301.

    Article  CAS  Google Scholar 

  32. Zhang M, Brewer AC, Schröder K, Santos CX, Grieve DJ, Wang M et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci 2010; 107: 18121–18126.

    Article  CAS  Google Scholar 

  33. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 2007; 100: 1634–1642.

    Article  CAS  Google Scholar 

  34. Hu C, Dandapat A, Sun L, Marwali MR, Inoue N, Sugawara F et al. Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion. Hypertension 2008; 52: 556–562.

    Article  CAS  Google Scholar 

  35. Ahmed A, Fujisawa T, Nui XL, Ahmad S, Al-Ani B, Chudasama K et al. Angiopoietin-2 confers atheroprotection in apoE−/− mice by inhibiting LDL oxidation via nitric oxide. Circ Res 2009; 104: 1333–1336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by funds from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Mehta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Wang, X., Wang, W. et al. LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Ther 19, 522–531 (2012). https://doi.org/10.1038/gt.2011.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.133

Keywords

This article is cited by

Search

Quick links