Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Construction of a novel expression cassette for increasing transgene expression in vivo in endothelial cells of large blood vessels

Abstract

The success of gene therapy hinges on achievement of adequate transgene expression. To ensure high transgene expression, many gene-therapy vectors include highly active virus-derived transcriptional elements. Other vectors include tissue-specific eukaryotic transcriptional elements, intended to limit transgene expression to specific cell types, avoid toxicity and prevent immune responses. Unfortunately, tissue specificity is often accompanied by lower transgene expression. Here, we use eukaryotic (murine) transcriptional elements and a virus-derived posttranscriptional element to build cassettes designed to express a potentially therapeutic gene (interleukin (IL)-10) in large-vessel endothelial cells (ECs) at levels as high as obtained with the cytomegalovirus (CMV) immediate early promoter, while retaining EC specificity. The cassettes were tested by incorporation into helper-dependent adenoviral vectors, and transduction into bovine aortic EC in vitro and rabbit carotid EC in vivo. The murine endothelin-1 promoter showed EC specificity, but expressed only 3% as much IL-10 mRNA as CMV. Inclusion of precisely four copies of an EC-specific enhancer and a posttranscriptional regulatory element increased IL-10 expression to a level at or above the CMV promoter in vivo, while retaining—and possibly enhancing—EC specificity, as measured in vitro. The cassette reported here will likely be useful for maximizing transgene expression in large-vessel EC, while minimizing systemic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. De Caterina R, Libby P (eds). Endothelial Dysfunctions and Vascular Disease. Blackwell: Malden, MA, 2007: 416 pp.

    Book  Google Scholar 

  2. Yla-Herttuala S, Martin JF . Cardiovascular gene therapy. Lancet 2000; 355: 213–222.

    Article  CAS  PubMed  Google Scholar 

  3. Baker AH . Development and use of gene transfer for treatment of cardiovascular disease. J Card Surg 2002; 17: 543–548.

    Article  PubMed  Google Scholar 

  4. Gaffney MM, Hynes SO, Barry F, O’Brien T . Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 2007; 152: 175–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rissanen TT, Yla-Herttuala S . Current status of cardiovascular gene therapy. Mol Ther 2007; 15: 1233–1247.

    Article  CAS  PubMed  Google Scholar 

  6. Wen S, Schneider DB, Driscoll RM, Vassalli G, Sassani AB, Dichek DA . Second-generation adenoviral vectors do not prevent rapid loss of transgene expression and vector DNA from the arterial wall. Arterioscler Thromb Vasc Biol 2000; 20: 1452–1458.

    Article  CAS  PubMed  Google Scholar 

  7. Gruchala M, Bhardwaj S, Pajusola K, Roy H, Rissanen TT, Kokina I et al. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med 2004; 6: 545–554.

    Article  CAS  PubMed  Google Scholar 

  8. Channon KM, Qian H, Youngblood SA, Olmez E, Shetty GA, Neplioueva V et al. Acute host-mediated endothelial injury after adenoviral gene transfer in normal rabbit arteries: impact on transgene expression and endothelial function. Circ Res 1998; 82: 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  9. Newman KD, Dunn PF, Owens JW, Schulick AH, Virmani R, Sukhova G et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 1995; 96: 2955–2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Modlich U, Pugh CW, Bicknell R . Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Ther 2000; 7: 896–902.

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19: 838–842.

    Article  CAS  PubMed  Google Scholar 

  12. Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 2001; 38: 65–70.

    Article  CAS  PubMed  Google Scholar 

  13. Velasco B, Ramirez JR, Relloso M, Li C, Kumar S, Lopez-Bote JP et al. Vascular gene transfer driven by endoglin and ICAM-2 endothelial-specific promoters. Gene Therapy 2001; 8: 897–904.

    Article  CAS  PubMed  Google Scholar 

  14. De Palma M, Venneri MA, Naldini L . In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14: 1193–1206.

    Article  CAS  PubMed  Google Scholar 

  15. Richardson TB, Kaspers J, Porter CD . Retroviral hybrid LTR vector strategy: functional analysis of LTR elements and generation of endothelial cell specificity. Gene Therapy 2004; 11: 775–783.

    Article  CAS  PubMed  Google Scholar 

  16. White SJ, Papadakis ED, Rogers CA, Johnson JL, Biessen EA, Newby AC . In vitro and in vivo analysis of expression cassettes designed for vascular gene transfer. Gene Therapy 2008; 15: 340–346.

    Article  CAS  PubMed  Google Scholar 

  17. Varda-Bloom N, Shaish A, Gonen A, Levanon K, Greenbereger S, Ferber S et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Therapy 2001; 8: 819–827.

    Article  CAS  PubMed  Google Scholar 

  18. Greenberger S, Shaish A, Varda-Bloom N, Levanon K, Breitbart E, Goldberg I et al. Transcription-controlled gene therapy against tumor angiogenesis. J Clin Invest 2004; 113: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szymanski P, Anwer K, Sullivan SM . Development and characterization of a synthetic promoter for selective expression in proliferating endothelial cells. J Gene Med 2006; 8: 514–523.

    Article  CAS  PubMed  Google Scholar 

  20. Levanon K, Varda-Bloom N, Greenberger S, Barshack I, Goldberg I, Orenstein A et al. Vascular wall maturation and prolonged angiogenic effect by endothelial-specific platelet-derived growth factor expression. Pathobiology 2006; 73: 149–158.

    Article  CAS  PubMed  Google Scholar 

  21. Minami T, Aird WC . Endothelial cell gene regulation. Trends Cardiovasc Med 2005; 15: 174–184.

    Article  CAS  PubMed  Google Scholar 

  22. Papadakis ED, Nicklin SA, Baker AH, White SJ . Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89–113.

    Article  CAS  PubMed  Google Scholar 

  23. Wen S, Graf S, Massey PG, Dichek DA . Improved vascular gene transfer with a helper-dependent adenoviral vector. Circulation 2004; 110: 1484–1491.

    Article  CAS  PubMed  Google Scholar 

  24. Bu X, Quertermous T . Identification of an endothelial cell-specific regulatory region in the murine endothelin-1 gene. J Biol Chem 1997; 272: 32613–32622.

    Article  CAS  PubMed  Google Scholar 

  25. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Terkeltaub RA . IL-10: an ‘immunologic scalpel’ for atherosclerosis? Arterioscler Thromb Vasc Biol 1999; 19: 2823–2825.

    Article  CAS  PubMed  Google Scholar 

  27. De Geest B, Van Linthout S, Lox M, Collen D, Holvoet P . Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum Gene Ther 2000; 11: 101–112.

    Article  CAS  PubMed  Google Scholar 

  28. Schneider DB, Vassalli G, Wen S, Driscoll RM, Sassani AB, DeYoung MB et al. Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol 2000; 20: 298–308.

    Article  CAS  PubMed  Google Scholar 

  29. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy 2006; 13: 641–645.

    Article  CAS  PubMed  Google Scholar 

  30. Schiedner G, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S . Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 2002; 76: 1600–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS . Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  CAS  PubMed  Google Scholar 

  32. Salem HK, Ranjzad P, Driessen A, Appleby CE, Heagerty AM, Kingston PA . Beta-adrenoceptor blockade markedly attenuates transgene expression from cytomegalovirus promoters within the cardiovascular system. Arterioscler Thromb Vasc Biol 2006; 26: 2267–2274.

    Article  CAS  PubMed  Google Scholar 

  33. Ross R . Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  CAS  PubMed  Google Scholar 

  34. Tal R, Shaish A, Rofe K, Feige E, Varda-Bloom N, Afek A et al. Endothelial-targeted gene transfer of hypoxia-inducible factor-1alpha augments ischemic neovascularization following systemic administration. Mol Ther 2008; 16: 1927–1936.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw LC, Pan H, Afzal A, Calzi SL, Spoerri PE, Sullivan SM et al. Proliferating endothelial cell-specific expression of IGF-I receptor ribozyme inhibits retinal neovascularization. Gene Therapy 2006; 13: 752–760.

    Article  CAS  PubMed  Google Scholar 

  36. Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1: 522–532.

    Article  CAS  PubMed  Google Scholar 

  37. Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T . Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 2001; 272: 149–156.

    Article  CAS  PubMed  Google Scholar 

  38. Dong G, Schulick AH, DeYoung MB, Dichek DA . Identification of a cis-acting sequence in the human plasminogen activator inhibitor type-1 gene that mediates transforming growth factor-b1 responsiveness in endothelium in vivo. J Biol Chem 1996; 271: 29969–29977.

    Article  CAS  PubMed  Google Scholar 

  39. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  PubMed  Google Scholar 

  40. Parks RJ, Bramson JL, Wan Y, Addison CL, Graham FL . Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J Virol 1999; 73: 8027–8034.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Houston P, White BP, Campbell CJ, Braddock M . Delivery and expression of fluid shear stress-inducible promoters to the vessel wall: applications for cardiovascular gene therapy. Hum Gene Ther 1999; 10: 3031–3044.

    Article  CAS  PubMed  Google Scholar 

  42. Perkins HD, van Leeuwen BH, Hardy CM, Kerr PJ . The complete cDNA sequences of IL-2, IL-4, IL-6 and IL-10 from the European rabbit (Oryctolagus cuniculus). Cytokine 2000; 12: 555–565.

    Article  CAS  PubMed  Google Scholar 

  43. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

  45. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank AdVec, Inc. for permission to use the HDAd reagents, David Russell for providing the WPRE, Axel Schambach for the oPRE sequence, Harvey Perkins for the rabbit IL-10 cDNA, Steve Hauschka for helpful discussions, and Thomas Quertermous for the murine ET-1 sequences. Sofia Penev provided valuable technical help, and we are grateful to Margo Weiss for administrative assistance. This work was supported by National Institutes of Health grant HL076226 and the John L Locke, Jr Charitable Trust. Jordan Kho was supported in part by a grant to the University of Washington from the Howard Hughes Medical Institute through the Undergraduate Science Education Program. This work has been funded by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Dichek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dronadula, N., Du, L., Flynn, R. et al. Construction of a novel expression cassette for increasing transgene expression in vivo in endothelial cells of large blood vessels. Gene Ther 18, 501–508 (2011). https://doi.org/10.1038/gt.2010.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.173

Keywords

This article is cited by

Search

Quick links