Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor cells expressing a fusion protein of MULT1 and Fas are rejected in vivo by apoptosis and NK cell activation

Abstract

Tumor cells evade immunosurveillance by elements of the innate immune system, such as natural killer (NK) cells, by downregulating or ‘shedding’ certain cell-surface molecules like mouse UL16-binding protein-like transcript 1 (MULT1) that can activate NK cells through NK cell receptors such as NKG2D; they also avoid Fas-mediated apoptosis by downregulating its expression. In the present study we report the design and evaluation of the antitumor activity of a novel fusion protein, MULT1E/FasTI, consisting of the extracellular domain of MULT1 and the transmembrane and intracellular domains of Fas. The fusion construct (pMULT1E/FasTI) was transfected into the mouse pulmonary carcinoma cell line TC-1; and stable cell clones expressing the fusion protein were established. In-vitro cell culture studies demonstrated that the binding of the NKG2D/Fc, a recombinant protein of mouse NK cell receptor, to MULT1E/FasTI expressed on tumor cells was able to elicit apoptosis as assayed by Annexin V–fluorescein isothiocyanate staining and caspase-3 enzyme-linked immunosorbent assay and to activate NKG2D-expressing cells, such as NK cells. In-vivo subcutaneous tumor studies demonstrated that tumor cells expressing MULT1E/FasTI grew significantly slower than cells without the protein. Pulmonary metastasis studies showed that most of the mice completely rejected tumor cells expressing MULT1E/FasTI. This approach may generate a new therapeutic agent for tumor treatment when combined with tumor cell-specific gene delivery vehicles such as oncolytic adenovirus vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Trinchieri G . Biology of natural killer cells. Adv Immunol 1989; 47: 187–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diefenbach A, Raulet DH . Strategies for target cell recognition by natural killer cells. Immunol Rev 2001; 181: 170–184.

    Article  CAS  PubMed  Google Scholar 

  3. Moretta L, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197–223.

    Article  CAS  PubMed  Google Scholar 

  4. Ljunggren HG, Karre K . In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–244.

    Article  CAS  PubMed  Google Scholar 

  5. Yokoyama WM, Daniels BF, Seaman WE, Hunziker R, Margulies DH, Smith HR et al. A family of murine NK cell receptors specific for target cell MHC class I molecules. Semin Immunol 1995; 7: 89–101.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 2000; 97: 4778–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takei F, McQueen KL, Maeda M, Wilhelm BT, Lohwasser S, Lian RH et al. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 2001; 181: 90–103.

    Article  CAS  PubMed  Google Scholar 

  8. Raulet DH, Vance RE, McMahon CW . Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 2001; 19: 291–330.

    Article  CAS  PubMed  Google Scholar 

  9. Braud VM, Allan DS, McMichael AJ . Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 1999; 11: 100–108.

    Article  CAS  PubMed  Google Scholar 

  10. Bauer S, Groh V, Wu J, Steinle A, Phillip JH, Lanier LL et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729.

    Article  CAS  PubMed  Google Scholar 

  11. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH . The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002; 17: 19–29.

    Article  CAS  PubMed  Google Scholar 

  12. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000; 1: 119–126.

    Article  CAS  PubMed  Google Scholar 

  13. Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G et al. The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol 1998; 161: 3501–3509.

    CAS  PubMed  Google Scholar 

  14. Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM . Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 2002; 169: 4079–4083.

    Article  CAS  PubMed  Google Scholar 

  15. Diefenbach A, Hsia JK, Hsiung MY, Raulet DH . A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 2003; 33: 381–391.

    Article  CAS  PubMed  Google Scholar 

  16. Peter ME, Krammer PH . The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  CAS  PubMed  Google Scholar 

  17. Houston A, O'Connell J . The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 2004; 4: 321–426.

    Article  CAS  PubMed  Google Scholar 

  18. Groh V, Wu J, Yee C, Spies T . Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  PubMed  Google Scholar 

  19. Sahh HR, Rammensee HG, Steinle A . Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 2002; 169: 4098–4102.

    Article  Google Scholar 

  20. Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, Quentmeier A et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 1994; 57: 371–377.

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov VN, Bergami PL, Maulit G, Sato TA, Sassoon D, Ronai Z . FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 2003; 23: 3623–3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396: 699–703.

    Article  CAS  PubMed  Google Scholar 

  23. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. BCL-X, a BCL-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  CAS  PubMed  Google Scholar 

  24. Sarid R, Sat T, Bohenzky RA, Russo JJ, Chang Y . Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nature Med 1997; 3: 293–298.

    Article  CAS  PubMed  Google Scholar 

  25. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nature Med 1996; 2: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  26. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M . Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 2000; 97: 10872–10877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med 2000; 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  28. Soengas MS, Capodieci P, Polsky D . Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211.

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Eng J Med 1985; 313: 1485–1492.

    Article  CAS  Google Scholar 

  30. Law TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O'Connell M et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 1995; 76: 824–832.

    Article  CAS  PubMed  Google Scholar 

  31. Meropol NJ, Barresi GM, Fehniger TA, Hitt J, Franklin M, Caligiuri MA et al. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-done interleukin-2 plus periodic intermediate dose pulsing. Can Immunol Immunother 1998; 46: 318–326.

    Article  CAS  Google Scholar 

  32. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ et al. Human lung carcinomas express Fas ligand. Cancer Res 1997; 57: 1007–1012.

    CAS  PubMed  Google Scholar 

  33. Okada K, Komuta K, Hashimoto S, Matsuzaki S, Kanematsu T, Koji T . Frequency of apoptosis of tumor-infiltrating lymphocytes induced by Fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res 2000; 6: 3560–3564.

    CAS  PubMed  Google Scholar 

  34. Zheng HC, Sun JM, Wei ZL, Yang XF, Zhang YC, Xin Y . Expression of Fas ligand and caspase-3 contributes to formation of immune escape in gastric cancer. World J Gastroenterol 2003; 9: 1415–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elsasser-Beile U, Gierschner D, Welchner T, Wetterauer U . Different expression of Fas and Fas ligand in tumor infiltrating and peripheral lymphocytes of patients with renal cell carcinomas. Anticancer Res 2003; 23: 433–437.

    CAS  PubMed  Google Scholar 

  36. Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 2004; 6: 558–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bryceson YT, March ME, Ljunggren HG, Long EO . Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006; 214: 73–91.

    Article  CAS  PubMed  Google Scholar 

  38. Tassi I, Klesney-Tait J, Colonna M . Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunol Rev 2006; 214: 92–105.

    Article  CAS  PubMed  Google Scholar 

  39. Smyth MJ, Hayakawa Y, Takeda K, Yagita H . New aspects of natural killer cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850–851.

    Article  CAS  PubMed  Google Scholar 

  40. Diefenbach A, Jesen ER, Jamieson AM, Raulet DH . Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 2001; 413: 165–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cerwenka A, Baron JL, Lanier LL . Ectopic expression of retinoic acid early inducible-1 (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 2001; 98: 11521–11526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cohen EE, Rudin CM . ONYX-015: Onyx Pharmaceuticals. Curr Opin Investig Drugs 2001; 2: 1770–1775.

    CAS  PubMed  Google Scholar 

  43. Ries S, Korn WM . ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu XY . Targeting gene-virotherapy of cancer and its prosperity. Cell Res 2006; 16: 879–886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eric Holle and his staff for the professional care of the mice used in this study and Lakendra Workman for her administrative contribution in this study. This study was supported in part by the GHS Oncology Foundation and the New Hope fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotturi, H., Li, J., Branham-O'Connor, M. et al. Tumor cells expressing a fusion protein of MULT1 and Fas are rejected in vivo by apoptosis and NK cell activation. Gene Ther 15, 1302–1310 (2008). https://doi.org/10.1038/gt.2008.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.77

Keywords

This article is cited by

Search

Quick links