Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Endothelial progenitor cells for cancer gene therapy

Abstract

Endothelial progenitor cells (EPCs) are promising for cancer therapy because they specifically target tumors. They have the capacity to home to, invade, migrate within and incorporate into tumor structures. They are easily expanded and can be armed with therapeutic payloads protected within the progenitor cells. Once in the tumor, armed EPCs can be triggered to induce cell death in surrounding tumor cells while being transiently protected from premature demise. In preclinical studies, therapeutic EPCs attenuated tumor growth and increased survival. Enhancing homing, self-protection and collateral tumor cell damage will increase the efficacy of EPCs for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G . A common precursor for hematopoietic and endothelial cells. Development 1998; 125: 725–732.

    CAS  PubMed  Google Scholar 

  2. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–66.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–442.

    Article  CAS  PubMed  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    Article  CAS  PubMed  Google Scholar 

  5. Gunsilius E, Petzer AL, Duba HC, Kahler CM, Gastl G . Circulating endothelial cells after transplantation. Lancet 2001; 357: 1449–1450.

    Article  CAS  PubMed  Google Scholar 

  6. Rafii S, Lyden D . Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9: 702–712.

    Article  CAS  PubMed  Google Scholar 

  7. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  8. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    CAS  PubMed  Google Scholar 

  9. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 2007; 35: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  10. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC . CD34− blood-derived human endothelial cell progenitors. Stem Cells 2001; 19: 304–312.

    Article  CAS  PubMed  Google Scholar 

  11. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  12. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 2003; 63: 4342–4346.

    CAS  PubMed  Google Scholar 

  13. Ho JW, Pang RW, Lau C, Sun CK, Yu WC, Fan ST et al. Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 2006; 44: 836–843.

    Article  CAS  PubMed  Google Scholar 

  14. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 2006; 66: 7341–7347.

    Article  CAS  PubMed  Google Scholar 

  15. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–228.

    Article  CAS  PubMed  Google Scholar 

  16. Davidoff AM, Ng CY, Brown P, Leary MA, Spurbeck WW, Zhou J et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001; 7: 2870–2879.

    CAS  PubMed  Google Scholar 

  17. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  18. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  19. Spring H, Schuler T, Arnold B, Hammerling GJ, Ganss R . Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 2005; 102: 18111–18116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 2007; 21: 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313: 1785–1787.

    Article  CAS  PubMed  Google Scholar 

  22. Yu D, Sun X, Qiu Y, Zhou J, Wu Y, Zhuang L et al. Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clin Cancer Res 2007; 13: 3814–3824.

    Article  CAS  PubMed  Google Scholar 

  23. Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM et al. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 2004; 104: 1769–1777.

    Article  PubMed  Google Scholar 

  24. Larrivee B, Niessen K, Pollet I, Corbel SY, Long M, Rossi FM et al. Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol 2005; 175: 2890–2899.

    Article  CAS  PubMed  Google Scholar 

  25. De Palma M, Venneri MA, Roca C, Naldini L . Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 2003; 9: 789–795.

    Article  CAS  PubMed  Google Scholar 

  26. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P . Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 2004; 104: 2084–2086.

    Article  CAS  PubMed  Google Scholar 

  27. Kopp HG, Ramos CA, Rafii S . Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 2006; 13: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 2001; 88: 167–174.

    Article  CAS  PubMed  Google Scholar 

  30. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–583.

    Article  CAS  PubMed  Google Scholar 

  31. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  32. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367: 576–579.

    Article  CAS  PubMed  Google Scholar 

  33. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002; 8: 831–840.

    Article  CAS  PubMed  Google Scholar 

  34. Aghi M, Cohen KS, Klein RJ, Scadden DT, Chiocca EA . Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 2006; 66: 9054–9064.

    Article  CAS  PubMed  Google Scholar 

  35. Petit I, Jin D, Rafii S . The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 2007; 28: 299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–439.

    Article  CAS  PubMed  Google Scholar 

  37. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89: 981–990.

    Article  CAS  PubMed  Google Scholar 

  38. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  39. Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY . Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 2000; 86: 24–29.

    Article  CAS  PubMed  Google Scholar 

  40. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 2000; 6: 41–51.

    Article  CAS  PubMed  Google Scholar 

  41. Dimmeler S, Haendeler J, Nehls M, Zeiher AM . Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 1997; 185: 601–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butzal M, Loges S, Schweizer M, Fischer U, Gehling UM, Hossfeld DK et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res 2004; 300: 65–71.

    Article  CAS  PubMed  Google Scholar 

  43. Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K, Sessa WC . Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem 2001; 276: 30359–30365.

    Article  CAS  PubMed  Google Scholar 

  44. Gerber HP, Dixit V, Ferrara N . Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998; 273: 13313–13316.

    Article  CAS  PubMed  Google Scholar 

  45. O’Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 2000; 156: 393–398.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG et al. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 1999; 264: 781–788.

    Article  CAS  PubMed  Google Scholar 

  47. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147–157.

    Article  CAS  PubMed  Google Scholar 

  48. Gao C, Sun W, Christofidou-Solomidou M, Sawada M, Newman DK, Bergom C et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood 2003; 102: 169–179.

    Article  CAS  PubMed  Google Scholar 

  49. Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM . Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. J Biol Chem 2000; 275: 20959–20962.

    Article  CAS  PubMed  Google Scholar 

  50. Stupack DG, Cheresh DA . Apoptotic cues from the extracellular matrix: regulators of angiogenesis. Oncogene 2003; 22: 9022–9029.

    Article  CAS  PubMed  Google Scholar 

  51. Benjamin LE, Hemo I, Keshet E . A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125: 1591–1598.

    CAS  PubMed  Google Scholar 

  52. Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S . Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood 2004; 104: 3591–3597.

    Article  CAS  PubMed  Google Scholar 

  53. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R . Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2002; 99: 4391–4396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A et al. Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 2004; 5: 477–488.

    Article  CAS  PubMed  Google Scholar 

  55. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC . Vessel wall derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2004; 104: 2752–2760.

    Article  CAS  PubMed  Google Scholar 

  56. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105: 1527–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM . Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002; 109: 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18: 3964–3972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001; 108: 391–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shaked Y, Kerbel RS . Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res 2007; 67: 7055–7058.

    Article  CAS  PubMed  Google Scholar 

  63. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA . Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Therapy 2003; 10: 647–656.

    Article  CAS  PubMed  Google Scholar 

  64. Moore XL, Lu J, Sun L, Zhu CJ, Tan P, Wong MC . Endothelial progenitor cells’ ‘homing’ specificity to brain tumors. Gene Therapy 2004; 11: 811–818.

    Article  CAS  PubMed  Google Scholar 

  65. Le Ricousse-Roussanne S, Barateau V, Contreres JO, Boval B, Kraus-Berthier L, Tobelem G . Ex vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors home to the angiogenic tumor vasculature. Cardiovasc Res 2004; 62: 176–184.

    Article  CAS  PubMed  Google Scholar 

  66. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  67. Rancourt C, Robertson III MW, Wang M, Goldman CK, Kelly JF, Alvarez RD et al. Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary. Clin Cancer Res 1998; 4: 265–270.

    CAS  PubMed  Google Scholar 

  68. Gomez-Navarro J, Contreras JL, Arafat W, Jiang XL, Krisky D, Oligino T et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Therapy 2000; 7: 43–52.

    Article  CAS  PubMed  Google Scholar 

  69. Arafat WO, Casado E, Wang M, Alvarez RD, Siegal GP, Glorioso JC et al. Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells. Clin Cancer Res 2000; 6: 4442–4448.

    CAS  PubMed  Google Scholar 

  70. Benouchan M, Do Nascimento F, Perret GY, Colombo BM . Delivery of the bacterial nitroreductase gene into endothelial cells prolongs the survival of tumour-bearing mice by bystander mechanisms. Int J Oncol 2006; 28: 457–462.

    CAS  PubMed  Google Scholar 

  71. Wei J, Jarmy G, Genuneit J, Debatin KM, Beltinger C . Human blood late outgrowth endothelial cells for gene therapy of cancer: determinants of efficacy. Gene Therapy 2007; 14: 344–356.

    Article  CAS  PubMed  Google Scholar 

  72. Dudek AZ, Bodempudi V, Welsh BW, Jasinski P, Griffin RJ, Milbauer L et al. Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer 2007; 97: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jevremovic D, Gulati R, Hennig I, Diaz RM, Cole C, Kleppe L et al. Use of blood outgrowth endothelial cells as virus-producing vectors for gene delivery to tumors. Am J Physiol Heart Circ Physiol 2004; 287: H494–H500.

    Article  CAS  PubMed  Google Scholar 

  74. Wei J, Zhou S, Bachem G, Debatin KM, Beltinger C . Infiltration of blood outgrowth endothelial cells into tumor spheroids: role of matrix metalloproteinases and irradiation. Anticancer Res 2007; 27: 1415–1421.

    CAS  PubMed  Google Scholar 

  75. Ojeifo JO, Lee HR, Rezza P, Su N, Zwiebel JA . Endothelial cell-based systemic gene therapy of metastatic melanoma. Cancer Gene Ther 2001; 8: 636–648.

    Article  CAS  PubMed  Google Scholar 

  76. Wei J, Wahl J, Nakamura T, Stiller D, Mertens T, Debatin KM et al. Targeted release of oncolytic measles virus by blood outgrowth endothelial cells in situ inhibits orthotopic gliomas. Gene Therapy 2007; 14: 1573–1586.

    Article  CAS  PubMed  Google Scholar 

  77. Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003; 63: 2462–2469.

    CAS  PubMed  Google Scholar 

  78. Oh HK, Ha JM, O E, Lee BH, Lee SK, Shim BS et al. Tumor angiogenesis promoted by ex vivo differentiated endothelial progenitor cells is effectively inhibited by an angiogenesis inhibitor, TK1-2. Cancer Res 2007; 67: 4851–4859.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nora Hipp for clerical assistance and Helgard Knauß for artwork. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft (to CB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Beltinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debatin, KM., Wei, J. & Beltinger, C. Endothelial progenitor cells for cancer gene therapy. Gene Ther 15, 780–786 (2008). https://doi.org/10.1038/gt.2008.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.36

Keywords

Search

Quick links