Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV2/1-TNFR:Fc gene delivery prevents periodontal disease progression

Abstract

Periodontal disease is a chronic inflammatory condition induced by tooth-associated microbial biofilms that induce a host immune response. Therapeutic control of progressive tissue destruction in high-risk patients is a significant challenge in therapy. Soluble protein delivery of antagonists to tumor necrosis factor-α (TNF-α) inhibits alveolar bone resorption due to periodontitis. However, protein therapy raises several concerns, such as recurrence of disease activity after treatment cessation and repeated dosing regimens. In this study, we used pseudotyped adeno-associated virus vector based on serotype 1 (AAV2/1) to deliver the TNF receptor-immunoglobulin Fc (TNFR:Fc) fusion gene to rats subjected to experimental Porphyromonas gingivalis (Pg)-lipopolysaccharide (LPS)-mediated bone loss. Animals received Pg-LPS delivered to the gingivae thrice weekly for 8 weeks, vehicle alone, Pg-LPS and intramuscular delivery of pseudotyped AAV2/1-TNFR:Fc vector (1 × 1011 DNase I-resistant particles) or AAV2/1-TNFR:Fc vector delivered to naive animals. AAV2/1-TNFR:Fc therapy led to sustained therapeutic levels of serum TNFR protein and protected against Pg-LPS-mediated loss of bone volume and density. Furthermore, AAV2/1-TNFR:Fc administration reduced local levels of multiple proinflammatory cytokines and osteoclast-like cells at the periodontal lesions. These findings suggest that delivery of AAV2/1-TNFR:Fc may be a viable approach to modulate periodontal disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW . Periodontal diseases. Lancet 2005; 366: 1809–1820.

    Article  Google Scholar 

  2. Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs Jr DR, Sacco RL et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 2005; 111: 576–582.

    Article  Google Scholar 

  3. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    Article  CAS  Google Scholar 

  4. Giannobile WV . Host-response therapeutics for periodontal diseases. J Periodontol 2008; 79: 1592–1600.

    Article  CAS  Google Scholar 

  5. Reddy MS, Geurs NC, Gunsolley JC . Periodontal host modulation with antiproteinase, anti-inflammatory, and bone-sparing agents. A systematic review. Ann Periodontol 2003; 8: 12–37.

    Article  Google Scholar 

  6. Graves DT, Cochran D . The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 2003; 74: 391–401.

    Article  CAS  Google Scholar 

  7. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A . Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275: 4858–4864.

    Article  CAS  Google Scholar 

  8. Ashkenazi A, Dixit VM . Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11: 255–260.

    Article  CAS  Google Scholar 

  9. Okada H, Murakami S . Cytokine expression in periodontal health and disease. Crit Rev Oral Biol Med 1998; 9: 248–266.

    Article  CAS  Google Scholar 

  10. Graves DT, Oskoui M, Volejnikova S, Naguib G, Cai S, Desta T et al. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J Dent Res 2001; 80: 1875–1879.

    Article  CAS  Google Scholar 

  11. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med 2005; 202: 589–595.

    Article  CAS  Google Scholar 

  12. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191: 275–286.

    Article  CAS  Google Scholar 

  13. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6: 97–105.

    Article  CAS  Google Scholar 

  14. Peschon JJ, Torrance DS, Stocking KL, Glaccum MB, Otten C, Willis CR et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol 1998; 160: 943–952.

    CAS  PubMed  Google Scholar 

  15. Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL . Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 1997; 100: 1557–1565.

    Article  CAS  Google Scholar 

  16. Garlet GP, Cardoso CR, Campanelli AP, Ferreira BR, Avila-Campos MJ, Cunha FQ et al. The dual role of p55 tumour necrosis factor-alpha receptor in Actinobacillus actinomycetemcomitans-induced experimental periodontitis: host protection and tissue destruction. Clin Exp Immunol 2007; 147: 128–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M et al. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 2004; 363: 675–681.

    Article  CAS  Google Scholar 

  18. van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis 2004; 63: 508–516.

    Article  CAS  Google Scholar 

  19. Keystone EC, Schiff MH, Kremer JM, Kafka S, Lovy M, DeVries T et al. Once-weekly administration of 50 mg etanercept in patients with active rheumatoid arthritis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2004; 50: 353–363.

    Article  CAS  Google Scholar 

  20. Scott DL, Kingsley GH . Tumor necrosis factor inhibitors for rheumatoid arthritis. N Engl J Med 2006; 355: 704–712.

    Article  CAS  Google Scholar 

  21. van der Heijde DM . Overview of radiologic efficacy of new treatments. Rheum Dis Clin North Am 2004; 30: 285–293.

    Article  CAS  Google Scholar 

  22. Catrina AI, af Klint E, Ernestam S, Catrina SB, Makrygiannakis D, Botusan IR et al. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 2006; 54: 76–81.

    Article  CAS  Google Scholar 

  23. Assuma R, Oates T, Cochran D, Amar S, Graves DT . IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 1998; 160: 403–409.

    CAS  PubMed  Google Scholar 

  24. Delima AJ, Oates T, Assuma R, Schwartz Z, Cochran D, Amar S et al. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. J Clin Periodontol 2001; 28: 233–240.

    Article  CAS  Google Scholar 

  25. Graves DT, Delima AJ, Assuma R, Amar S, Oates T, Cochran D . Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. J Periodontol 1998; 69: 1419–1425.

    Article  CAS  Google Scholar 

  26. Oates TW, Graves DT, Cochran DL . Clinical, radiographic and biochemical assessment of IL-1/TNF-alpha antagonist inhibition of bone loss in experimental periodontitis. J Clin Periodontol 2002; 29: 137–143.

    Article  CAS  Google Scholar 

  27. Lima V, Vidal FD, Rocha FA, Brito GA, Ribeiro RA . Effects of tumor necrosis factor-alpha inhibitors pentoxifylline and thalidomide on alveolar bone loss in short-term experimental periodontal disease in rats. J Periodontol 2004; 75: 162–168.

    Article  CAS  Google Scholar 

  28. Taylor PC . Anti-tumor necrosis factor therapies. Curr Opin Rheumatol 2001; 13: 164–169.

    Article  CAS  Google Scholar 

  29. Chan JM, Villarreal G, Jin WW, Stepan T, Burstein H, Wahl SM . Intraarticular gene transfer of TNFR:Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Mol Ther 2002; 6: 727–736.

    Article  CAS  Google Scholar 

  30. Sandalon Z, Bruckheimer EM, Lustig KH, Burstein H . Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc Vector. Mol Ther 2007; 15: 264–269.

    Article  CAS  Google Scholar 

  31. Muthukuru M, Jotwani R, Cutler CW . Oral mucosal endotoxin tolerance induction in chronic periodontitis. Infect Immun 2005; 73: 687–694.

    Article  CAS  Google Scholar 

  32. WHO. Adherence to long-term therapies. Evidence for action. World Health Organization 2003. Available from: http://www.who.int/mediacentre/releases/2003/pr2054/en/.

  33. Warrington Jr KH, Herzog RW . Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119: 571–603.

    Article  CAS  Google Scholar 

  34. Bartold PM, Marshall RI, Haynes DR . Periodontitis and rheumatoid arthritis: a review. J Periodontol 2005; 76: 2066–2074.

    Article  CAS  Google Scholar 

  35. Socransky SS, Haffajee AD . The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 1992; 63: 322–331.

    Article  CAS  Google Scholar 

  36. Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 2004; 72: 5041–5051.

    Article  CAS  Google Scholar 

  37. Broad A, Jones DE, Kirby JA . Toll-like receptor (TLR) response tolerance: a key physiological ‘damage limitation’ effect and an important potential opportunity for therapy. Curr Med Chem 2006; 13: 2487–2502.

    Article  CAS  Google Scholar 

  38. Grutz G . New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 2005; 77: 3–15.

    Article  Google Scholar 

  39. Ridderstad A, Abedi-Valugerdi M, Moller E . Cytokines in rheumatoid arthritis. Ann Med 1991; 23: 219–223.

    Article  CAS  Google Scholar 

  40. Nanes MS . Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 2003; 321: 1–15.

    Article  CAS  Google Scholar 

  41. Liu D, Xu JK, Fibliomeni L, Huang L, Pavlos NJ, Rogers M et al. Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction. Int J Mol Med 2003; 11: 17–21.

    PubMed  Google Scholar 

  42. Wara-aswapati N, Surarit R, Chayasadom A, Boch JA, Pitiphat W . RANKL upregulation associated with periodontitis and Porphyromonas gingivalis. J Periodontol 2007; 78: 1062–1069.

    Article  Google Scholar 

  43. Nagasawa T, Kobayashi H, Kiji M, Aramaki M, Mahanonda R, Kojima T et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002; 130: 338–344.

    Article  CAS  Google Scholar 

  44. Almasri A, Wisithphrom K, Windsor LJ, Olson B . Nicotine and lipopolysaccharide affect cytokine expression from gingival fibroblasts. J Periodontol 2007; 78: 533–541.

    Article  CAS  Google Scholar 

  45. Wada N, Maeda H, Yoshimine Y, Akamine A . Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 2004; 35: 629–635.

    Article  CAS  Google Scholar 

  46. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 2000; 275: 768–775.

    Article  CAS  Google Scholar 

  47. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 2006; 169: 987–998.

    Article  CAS  Google Scholar 

  48. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175–179.

    Article  CAS  Google Scholar 

  49. Teng YT . Protective and destructive immunity in the periodontium: part 2—T-cell-mediated immunity in the periodontium. J Dent Res 2006; 85: 209–219.

    Article  CAS  Google Scholar 

  50. Sandalon Z, Bruckheimer EM, Lustig KH, Rogers LC, Peluso RW, Burstein H . Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 12355–12365.

    Article  CAS  Google Scholar 

  51. Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum Gene Ther 1998; 9: 2353–2362.

    Article  CAS  Google Scholar 

  52. Darveau RP, Hancock RE . Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 1983; 155: 831–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park CH, Abramson ZR, Taba Jr M, Jin Q, Chang J, Kreider JM et al. Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 2007; 78: 273–281.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of Charles E Shelburne (Department of Biologic and Material Sciences, University of Michigan, Ann Arbor, MI, USA), James Sugai, Heather H Huffer, Timothy J Daws and Nancy I Chen. This study was supported by NIDCR DE 016619 to WVG, NIH P-30-AR 46024 to Steven A Goldstein and CAPES–BEX0495/05-0 and FAPESP 2006/01970-0 to JAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W V Giannobile.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirelli, J., Park, C., MacKool, K. et al. AAV2/1-TNFR:Fc gene delivery prevents periodontal disease progression. Gene Ther 16, 426–436 (2009). https://doi.org/10.1038/gt.2008.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.174

Keywords

This article is cited by

Search

Quick links