Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells

Abstract

Gene therapy has proven to be of potential value for the correction of inherited hematopoietic disorders. However, the occurrence of severe side effects in some of the clinical trials has questioned the safety of this approach and has hampered the use of long terminal repeat-driven vectors for the treatment of a large number of patients. The development of self-inactivating (SIN) vectors with reduced genotoxicity provides an alternative to the currently used vectors. Our initial attempts to use SIN vectors for the correction of a myeloid disorder, chronic granulomatous disease, failed due to low vector titers and poor transgene expression. The optimization of the transgene cDNA (gp91phox) resulted in substantially increased titers and transgene expression. Most notably, transgene optimization significantly improved expression of a second cistron located downstream of gp91phox. Thus, optimization of the transgene sequence results in higher expression levels and increased therapeutic index allowing the use of low vector copy numbers per transduced cell and weaker internal promoters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  3. Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006; 14: 505–513.

    Article  CAS  PubMed  Google Scholar 

  4. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  5. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  6. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  7. Baum C, Fehse B . Mutagenesis by retroviral transgene insertion: risk assessment and potential alternatives. Curr Opin Mol Ther 2003; 5: 458–462.

    CAS  PubMed  Google Scholar 

  8. Baum C, Kustikova O, Modlich U, Li Z, Fehse B . Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 2006; 17: 253–263.

    Article  CAS  PubMed  Google Scholar 

  9. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  PubMed  Google Scholar 

  10. Cavazzana-Calvo M, Fischer A . Gene therapy for severe combined immunodeficiency: are we there yet? J Clin Invest 2007; 117: 1456–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  12. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  13. McCormack MP, Rabbitts TH . Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2004; 350: 913–922.

    Article  CAS  PubMed  Google Scholar 

  14. Heyworth PG, Cross AR, Curnutte JT . Chronic granulomatous disease. Curr Opin Immunol 2003; 15: 578–584.

    Article  CAS  PubMed  Google Scholar 

  15. Segal AW . The NADPH oxidase and chronic granulomatous disease. Mol Med Today 1996; 2: 129–135.

    Article  CAS  PubMed  Google Scholar 

  16. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM . Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79: 170–200.

    Article  CAS  Google Scholar 

  17. Anderson-Cohen M, Holland SM, Kuhns DB, Fleisher TA, Ding L, Brenner S et al. Severe phenotype of chronic granulomatous disease presenting in a female with a de novo mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol 2003; 109: 308–317.

    Article  CAS  PubMed  Google Scholar 

  18. Winkelstein JA, Marino MC, Johnston Jr RB, Boyle J, Curnutte J, Gallin JI et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 2000; 79: 155–169.

    Article  CAS  Google Scholar 

  19. Naldini L . Inserting optimism into gene therapy. Nat Med 2006; 12: 386–388.

    Article  CAS  PubMed  Google Scholar 

  20. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Therapy 2006; 13: 1524–1533.

    Article  CAS  PubMed  Google Scholar 

  21. Zhen L, King AA, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC . Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci USA 1993; 90: 9832–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayo LA, Curnutte JT . Kinetic microplate assay for superoxide production by neutrophils and other phagocytic cells. Methods Enzymol 1990; 186: 567–575.

    Article  CAS  PubMed  Google Scholar 

  23. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Therapy 2003; 10: 818–821.

    Article  CAS  PubMed  Google Scholar 

  24. Thornhill SI, Schambach A, Howe SJ, Ulaganathan M, Grassman E, Williams D et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 2008; 16: 590–598.

    Article  CAS  PubMed  Google Scholar 

  25. Aiuti A, Cassani B, Andolfi G, Mirolo M, Biasco L, Recchia A et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117: 2233–2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bushman FD . Retroviral integration and human gene therapy. J Clin Invest 2007; 117: 2083–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH, Hu J et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007; 117: 2225–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarzwaelder K, Howe SJ, Schmidt M, Brugman MH, Deichmann A, Glimm H et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du Y, Jenkins NA, Copeland NG . Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 2005; 106: 3932–3939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kustikova OS, Geiger H, Li Z, Brugman MH, Chambers SM, Shaw CA et al. Retroviral vector insertion sites associated with dominant hematopoietic clones mark ‘stemness’ pathways. Blood 2007; 109: 1897–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Metais JY, Dunbar CE . The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16: 439–449.

    Article  CAS  PubMed  Google Scholar 

  32. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235–4246.

    Article  CAS  PubMed  Google Scholar 

  33. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryu BY, Evans-Galea MV, Gray JT, Bodine DM, Persons DA, Nienhuis AW . An experimental system for the evaluation of retroviral vector design to diminish the risk for proto-oncogene activation. Blood 2008; 111: 1866–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  PubMed  Google Scholar 

  37. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  38. Radcliffe PA, Sion CJ, Wilkes FJ, Custard EJ, Beard GL, Kingsman SM et al. Analysis of factor VIII mediated suppression of lentiviral vector titres. Gene Therapy 2008; 15: 289–297.

    Article  CAS  PubMed  Google Scholar 

  39. Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 2008; 16: 280–289.

    Article  PubMed  Google Scholar 

  40. Schambach A, Baum C . Vector design for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells. DNA Repair (Amst) 2007; 6: 1187–1196.

    Article  CAS  Google Scholar 

  41. Choi U, DeRavin SS, Yamashita K, Whiting-Theobald N, Linton GF, Loktionova NA et al. Nuclear-localizing O6-benzylguanine-resistant GFP-MGMT fusion protein as a novel in vivo selection marker. Exp Hematol 2004; 32: 709–719.

    Article  CAS  PubMed  Google Scholar 

  42. Brenner S, Ryser MF, Choi U, Whiting-Theobald N, Kuhlisch E, Linton G et al. Polyclonal long-term MFGS-gp91phox marking in rhesus macaques after nonmyeloablative transplantation with transduced autologous peripheral blood progenitor cells. Mol Ther 2006; 14: 202–211.

    Article  CAS  PubMed  Google Scholar 

  43. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura M, Murakami M, Koga T, Tanaka Y, Minakami S . Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 1987; 69: 1404–1408.

    CAS  PubMed  Google Scholar 

  45. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the CGD Research Trust (J4G/04B/GT) to MG and AJT, the Deutsche Forschungsgemeinschaft to SB (BR 2057/3-2), CB, AS and MG (SPP1230) and to CB and AS (excellence cluster REBIRTH) and from the Bundesministerium für Bildung und Forschung to CB, AS and MG (TreatID). AS was further supported by a personal stipend of the Else-Kröner Memorial Foundation. The Georg-Speyer-Haus is supported by the Bundesministerium für Gesundheit and the Hessisches Ministerium für Wissenschaft und Kunst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Grez.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Carranza, B., Gentsch, M., Stein, S. et al. Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 16, 111–118 (2009). https://doi.org/10.1038/gt.2008.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.143

Keywords

This article is cited by

Search

Quick links