Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Identification of differentially expressed miRNAs in alopecia areata that target immune-regulatory pathways

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 2014; 20: 1043–1049.

    Article  CAS  Google Scholar 

  2. Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ 3rd . Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc 1995; 70: 628–633.

    Article  CAS  Google Scholar 

  3. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010; 466: 113–117.

    Article  CAS  Google Scholar 

  4. Betz RC, Petukhova L, Ripke S, Huang H, Menelaou A, Redler S et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun 2015; 6: 5966.

    Article  CAS  Google Scholar 

  5. Rodriguez TA, Fernandes KE, Dresser KL, Duvic M, National Alopecia Areata R. Concordance rate of alopecia areata in identical twins supports both genetic and environmental factors. J Am Acad Dermatol 2010; 62: 525–527.

    Article  Google Scholar 

  6. Pauley KM, Cha S, Chan EK . MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009; 32: 189–194.

    Article  CAS  Google Scholar 

  7. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  8. Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J et al. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun 2014; 15: 115–125.

    Article  CAS  Google Scholar 

  9. McClelland AD, Kantharidis P . microRNA in the development of diabetic complications. Clin Sci (Lond) 2014; 126: 95–110.

    Article  CAS  Google Scholar 

  10. Sundberg JP, Cordy WR, King LE Jr . Alopecia areata in aging C3H/HeJ mice. J Invest Dermatol 1994; 102: 847–856.

    Article  CAS  Google Scholar 

  11. McElwee KJ, Yu M, Park SW, Ross EK, Finner A, Shapiro J . What can we learn from animal models of alopecia areata? Dermatology 2005; 211: 47–53.

    Article  Google Scholar 

  12. Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R . Alopecia areata: animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev 2016; 15: 726–735.

    Article  CAS  Google Scholar 

  13. O'Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33: 607–619.

    Article  CAS  Google Scholar 

  14. Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 2011; 63: 1281–1288.

    Article  Google Scholar 

  15. Luo X, Tsai LM, Shen N, Yu D . Evidence for microRNA-mediated regulation in rheumatic diseases. Ann Rheum Dis 2010; 69: i30–i36.

    Article  CAS  Google Scholar 

  16. Carroll JM, McElwee KJ, E King L, Byrne MC, Sundberg JP . Gene array profiling and immunomodulation studies define a cell-mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J Invest Dermatol 2002; 119: 392–402.

    Article  CAS  Google Scholar 

  17. Bodemer C, Peuchmaur M, Fraitaig S, Chatenoud L, Brousse N, De Prost Y . Role of cytotoxic T cells in chronic alopecia areata. J Invest Dermatol 2000; 114: 112–116.

    Article  CAS  Google Scholar 

  18. Roshan R, Shridhar S, Sarangdhar MA, Banik A, Chawla M, Garg M et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA 2014; 20: 1287–1297.

    Article  CAS  Google Scholar 

  19. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859–1867.

    Article  CAS  Google Scholar 

  20. Catalan E, Jaime-Sanchez P, Aguilo N, Simon MM, Froelich CJ, Pardo J . Mouse cytotoxic T cell-derived granzyme B activates the mitochondrial cell death pathway in a Bim-dependent fashion. J Biol Chem 2015; 290: 6868–6877.

    Article  CAS  Google Scholar 

  21. Lieberman J . Granzyme A activates another way to die. Immunol Rev 2010; 235: 93–104.

    Article  CAS  Google Scholar 

  22. Wang EH, Yu M, Breitkopf T, Akhoundsadegh N, Wang X, Shi FT et al. Identification of autoantigen epitopes in alopecia areata. J Invest Dermatol 2016; 136: 1617–1626.

    Article  CAS  Google Scholar 

  23. Norris DA . Genes and immune response in alopecia areata: review of the alopecia areata research summit first day proceedings. J Investig Dermatol Symp Proc 2013; 16: S10–S12.

    Article  CAS  Google Scholar 

  24. Sundberg JP, Silva KA, Li R, Cox GA, King LE . Adult-onset alopecia areata is a complex polygenic trait in the C3H/HeJ mouse model. J Invest Dermatol 2004; 123: 294–297.

    Article  CAS  Google Scholar 

  25. Feng M, Yin B, Shen T, Ma Q, Liu L, Zheng J et al. TAP1 and TAP2 polymorphisms associated with ankylosing spondylitis in genetically homogenous Chinese Han population. Hum Immunol 2009; 70: 257–261.

    Article  CAS  Google Scholar 

  26. Schiano C, Vietri MT, Grimaldi V, Picascia A, De Pascale MR, Napoli C . Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci 2015; 36: 226–235.

    Article  CAS  Google Scholar 

  27. Meola N, Gennarino VA, Banfi S . microRNAs and genetic diseases. Pathogenetics 2009; 2: 7.

    Article  Google Scholar 

  28. Wang E, Chong K, Yu M, Akhoundsadegh N, Granville DJ, Shapiro J et al. Development of autoimmune hair loss disease alopecia areata is associated with cardiac dysfunction in C3H/HeJ mice. PLoS One 2013; 8: e62935.

    Article  CAS  Google Scholar 

  29. Sun Y, Peng R, Peng H, Liu H, Wen L, Wu T et al. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol Cell Endocrinol 2016; 433: 75–86.

    Article  CAS  Google Scholar 

  30. Zhang L, Ke F, Liu Z, Bai J, Liu J, Yan S et al. MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3. Nat Commun 2015; 6: 7639.

    Article  Google Scholar 

  31. Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 2012; 51: 1550–1556.

    Article  CAS  Google Scholar 

  32. Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y . Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 2009; 29: 749–754.

    Article  CAS  Google Scholar 

  33. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    Article  CAS  Google Scholar 

  34. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Locks of Love Foundation for the generous support of this work. We also thank the support from P30AR069632 Columbia University Skin Disease Resource-Based Center (epiCURE) and P50AR070588 Alopecia Areata Center for Research Translation (AACORT) on experimental design and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Christiano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., DeStefano, G., Patel, A. et al. Identification of differentially expressed miRNAs in alopecia areata that target immune-regulatory pathways. Genes Immun 18, 100–104 (2017). https://doi.org/10.1038/gene.2017.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2017.4

This article is cited by

Search

Quick links