Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Maternal immunity and pregnancy outcome: focus on preconception and autophagy

Abstract

Modulation of the maternal immune system before conception has a major role in determining subsequent pregnancy outcome. However, this has been a neglected area of investigation. There is a correlation between the length of time a woman is exposed to semen from her male partner and the development of regulatory T cells that limit a maternal antifetal immune response. Similarly, the composition of the vaginal microbiota influences the capacity of microorganisms to bypass the cervical barrier and colonize the uterus before pregnancy. The extent that this preconception colonization influences pre- and post-implantation gestational events depends on the types of microbes present, the genetic make-up of the mother and environmental influences on the magnitude and direction of her immune responses. Prepregnancy uterine and placental colonization with commensal bacteria may be beneficial to the fetus and newborn by generating tolerance to organisms that enhance postnatal well-being. Efforts to prevent or stop the progression of premature myometrial contractions have been limited because of an incomplete understanding of the mechanism(s) that trigger this occurrence. Based on recent studies of autophagy during gestation and parturition, inhibition of autophagy in myometrial cells may be the critical factor leading to a sequence of events culminating in induction of myometrial contractions either prematurely or at term.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chan RL . Biochemical markers of spontaneous preterm birth in asymptomatic women. Biomed Res Int 2014; 2014: 164081.

    PubMed  PubMed Central  Google Scholar 

  2. Kacerovsky M, Lenco J, Musilova I, Tambor V, Lamont R, Torloni MR et al. Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod Sci 2014; 21: 283–295.

    PubMed  Google Scholar 

  3. Schneider DS, Ayres JS . Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 2008; 8: 889–895.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY . Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 2012; 150: 29–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zenclussen AC, Hammerling GJ . Cellular regulation of the uterine microenvironment that enables embryo implantation. Front Immunol 2015; 6: 321.

    PubMed  PubMed Central  Google Scholar 

  6. Alijotas-Reig J, Llurba E, Gris JM . Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 2014; 35: 241–248.

    CAS  PubMed  Google Scholar 

  7. Jasper MJ, Tremellen KP, Robertson SA . Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod 2006; 12: 301–308.

    CAS  PubMed  Google Scholar 

  8. Palomares O, Martin-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M et al. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-beta. Genes Immun 2014; 15: 511–520.

    CAS  PubMed  Google Scholar 

  9. Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK . Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol 2015; 6: 84.

    PubMed  PubMed Central  Google Scholar 

  10. Schumacher A, Zenclussen AC . Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol 2014; 5: 288.

    PubMed  Google Scholar 

  11. Cheng SB, Sharma S . Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol 2015; 73: 487–500.

    CAS  PubMed  Google Scholar 

  12. Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB et al. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol 2015; 309: L280–L292.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rowe JH, Ertelt JM, Xin L, Way SS . Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012; 490: 102–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeremias J, Mockel S, Witkin SS . Human semen induces interleukin 10 and 70 kDa heat shock protein gene transcription and inhibits interferon-gamma messenger RNA production in peripheral blood mononuclear cells. Mol Hum Reprod 1998; 4: 1084–1088.

    CAS  PubMed  Google Scholar 

  15. Hsu P, Santner-Nanan B, Hu M, Skarratt K, Lee CH, Stormon M et al. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J Immunol 2015; 195: 3665–3674.

    CAS  PubMed  Google Scholar 

  16. Shih T, Peneva D, Xu X, Sutton A, Triche E, Ehrenkranz RA et al. The rising burden of preeclampsia in the United States impacts both maternal and child health. Am J Perinatol 2015, e-pub ahead of print 19 October 2015.

  17. Saftlas AF, Rubenstein L, Prater K, Harland KK, Field E, Triche EW . Cumulative exposure to paternal seminal fluid prior to conception and subsequent risk of preeclampsia. J Reprod Immunol 2014; 101-102: 104–110.

    PubMed  Google Scholar 

  18. Gonzalez-Comadran M, Urresta Avila J, Saavedra Tascon A, Jimenez R, Sola I, Brassesco M et al. The impact of donor insemination on the risk of preeclampsia: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2014; 182: 160–166.

    PubMed  Google Scholar 

  19. Schjenken JE, Robertson SA . Seminal fluid signalling in the female reproductive tract: implications for reproductive success and offspring health. Adv Exp Med Biol 2015; 868: 127–158.

    PubMed  Google Scholar 

  20. Robertson SA, Prins JR, Sharkey DJ, Moldenhauer LM . Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013; 69: 315–330.

    CAS  PubMed  Google Scholar 

  21. Schumacher A, Zenclussen AC . The paternal contribution to fetal tolerance. Adv Exp Med Biol 2015; 868: 211–225.

    PubMed  Google Scholar 

  22. Shima T, Inada K, Nakashima A, Ushijima A, Ito M, Yoshino O et al. Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy. J Reprod Immunol 2015; 108: 72–82.

    CAS  PubMed  Google Scholar 

  23. Kanninen T, Ramer I, Sisti G, Witkin S, Spandorfer S . Concentrations of insulin-like growth factor (IGF)-1 and 2 at the beginning of a matched donor cycle before stimulation predict outcome in recipients. Fertil Steril 2015; 104: e149 (Abstract P-126).

    Google Scholar 

  24. Ramer I, Kanninen TT, Sisti G, Witkin SS, Spandorfer SD . Association of in vitro fertilization outcome with circulating insulin-like growth factor components prior to cycle initiation. Am J Obstet Gynecol 2015; 213: 356.e1–6.

    CAS  Google Scholar 

  25. Spanos S, Becker DL, Winston RM, Hardy K . Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod 2000; 63: 1413–1420.

    CAS  PubMed  Google Scholar 

  26. Schoyer KD, Liu HC, Witkin S, Rosenwaks Z, Spandorfer SD . Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) in IVF patients with polycystic ovary syndrome: correlations with outcome. Fertil Steril 2007; 88: 139–144.

    CAS  PubMed  Google Scholar 

  27. Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, Ravikumar B et al. IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet 2013; 22: 4528–4544.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schiopu A . Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm 2013; 2013: 828354.

    PubMed  PubMed Central  Google Scholar 

  29. Nair RR, Khanna A, Singh K . Association of increased S100A8 serum protein with early pregnancy loss. Am J Reprod Immunol 2015; 73: 91–94.

    CAS  PubMed  Google Scholar 

  30. Nair RR, Khanna A, Singh K . Role of inflammatory proteins S100A8 and S100A9 in pathophysiology of recurrent early pregnancy loss. Placenta 2013; 34: 824–827.

    CAS  PubMed  Google Scholar 

  31. Buhimschi CS, Weiner CP, Buhimschi IA . Proteomics, part II: the emerging role of proteomics over genomics in spontaneous preterm labor/birth. Obstet Gynecol Surv 2006; 61: 543–553.

    PubMed  Google Scholar 

  32. Ramer I, Kanninen TT, Sisti G, Witkin SS, Spandorfer SD . Serum levels of brain-derived neurotrophic factor prior to initiation of an in vitro fertilization cycle predict outcome. Fertil Steril 2015; 104: e149 (Abstract P-125).

    Google Scholar 

  33. Kim H, Li Q, Hempstead BL, Madri JA . Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 2004; 279: 33538–33546.

    CAS  PubMed  Google Scholar 

  34. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 2002; 87: 728–734.

    CAS  PubMed  Google Scholar 

  35. Semple JW, Italiano JE Jr, Freedman J . Platelets and the immune continuum. Nat Rev Immunol 2011; 11: 264–274.

    CAS  PubMed  Google Scholar 

  36. Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O . Platelets and infections - complex interactions with bacteria. Front Immunol 2015; 6: 82.

    PubMed  PubMed Central  Google Scholar 

  37. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J . The placenta harbors a unique microbiome. Sci Transl Med 2014; 6: 237ra65.

    PubMed  PubMed Central  Google Scholar 

  38. Mitchell CM, Haick A, Nkwopara E, Garcia R, Rendi M, Agnew K et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol 2015; 212: 611.e1–e9.

    Google Scholar 

  39. Jaffe S, Normand N, Jayaram A, Orfanelli T, Doulaveris G, Passos M et al. Unique variation in genetic selection among Black North American women and its potential influence on pregnancy outcome. Med Hypotheses 2013; 81: 919–922.

    PubMed  Google Scholar 

  40. Flores ME, Simonsen SE, Manuck TA, Dyer JM, Turok DK . The "Latina epidemiologic paradox": contrasting patterns of adverse birth outcomes in U.S.-born and foreign-born Latinas. Womens Health Issues 2012; 22: e501–e507.

    PubMed  Google Scholar 

  41. Ramos BD, Kanninen TT, Sisti G, Witkin SS . Microorganisms in the female genital tract during pregnancy: tolerance versus pathogenesis. Am J Reprod Immunol 2015; 73: 383–389.

    Google Scholar 

  42. Biswas SK, Lopez-Collazo E . Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30: 475–487.

    CAS  PubMed  Google Scholar 

  43. Galask RP, Varner MW, Petzold CR, Wilbur SL . Bacterial attachment to the chorioamniotic membranes. Am J Obstet Gynecol 1984; 148: 915–928.

    CAS  PubMed  Google Scholar 

  44. Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med 1995; 333: 1737–1742.

    CAS  PubMed  Google Scholar 

  45. Witkin SS, Mendes-Soares H, Linhares IM, Jayaram A, Ledger WJ, Forney LJ . Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. MBio 2013; 4 (4). pii: e00460–13.

    Google Scholar 

  46. O'Hanlon DE, Moench TR, Cone RA . Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One 2013; 8: e80074.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci 2014; 21: 32–40.

    PubMed  PubMed Central  Google Scholar 

  48. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Bieda J et al. The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term. Microbiome 2014; 2: 18.

    PubMed  PubMed Central  Google Scholar 

  49. Cardenas I, Means RE, Aldo P, Koga K, Lang SM, Booth CJ et al. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. J Immunol 2010; 185: 1248–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cardenas I, Mor G, Aldo P, Lang SM, Stabach P, Sharp A et al. Placental viral infection sensitizes to endotoxin-induced pre-term labor: a double hit hypothesis. Am J Reprod Immunol 2011; 65: 110–117.

    CAS  PubMed  Google Scholar 

  51. Racicot K, Cardenas I, Wunsche V, Aldo P, Guller S, Means RE et al. Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J Immunol 2013; 191: 934–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Meadow JF, Altrichter AE, Bateman AC, Stenson J, Brown GZ, Green JL et al. Humans differ in their personal microbial cloud. PeerJ 2015; 3: e1258.

    PubMed  PubMed Central  Google Scholar 

  53. Mizushima N, Levine B . Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12: 823–830.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Valdor R, Macian F . Autophagy and the regulation of the immune response. Pharmacol Res 2012; 66: 475–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin LT, Dawson PW, Richardson CD . Viral interactions with macroautophagy: a double-edged sword. Virology 2010; 402: 1–10.

    CAS  PubMed  Google Scholar 

  56. Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T et al. Autophagy defends cells against invading group A Streptococcus. Science 2004; 306: 1037–1040.

    CAS  Google Scholar 

  57. Travassos LH, Carneiro LA, Girardin S, Philpott DJ . Nod proteins link bacterial sensing and autophagy. Autophagy 2010; 6: 409–411.

    PubMed  Google Scholar 

  58. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V . Toll-like receptors control autophagy. EMBO J 2008; 27: 1110–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008; 4: 309–314.

    CAS  PubMed  Google Scholar 

  60. Jia W, He YW . Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 2011; 186: 5313–5322.

    CAS  PubMed  Google Scholar 

  61. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 2005; 102: 7922–7927.

    CAS  PubMed  Google Scholar 

  62. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 2006; 281: 30373–30382.

    CAS  PubMed  Google Scholar 

  63. Kanninen TT, de Andrade Ramos BR, Witkin SS . The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol 2013; 171: 3–8.

    CAS  PubMed  Google Scholar 

  64. Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL . Autophagy in the human placenta throughout gestation. PLoS One 2013; 8: e83475.

    PubMed  PubMed Central  Google Scholar 

  65. Kanninen TT, de Andrade Ramos BR, Jaffe S, Bongiovanni AM, Linhares IM, Renzo GC et al. Inhibition of autophagy by sera from pregnant women. Reprod Sci 2013; 20: 1327–1331.

    CAS  PubMed  Google Scholar 

  66. Hirota Y, Daikoku T, Tranguch S, Xie H, Bradshaw HB, Dey SK . Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest 2010; 120: 803–815.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirota Y, Cha J, Yoshie M, Daikoku T, Dey SK . Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc Natl Acad Sci USA 2011; 108: 18073–18078.

    CAS  PubMed  Google Scholar 

  68. Agrawal V, Jaiswal MK, Mallers T, Katara GK, Gilman-Sachs A, Beaman KD et al. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep 2015; 5: 9410.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P et al. Autophagy in term normal human placentas. Placenta 2011; 32: 482–485.

    CAS  PubMed  Google Scholar 

  70. Doulaveris G, Orfanelli T, Benn K, Zervoudakis I, Skupski D, Witkin SS . A polymorphism in an autophagy-related gene, ATG16L1, influences time to delivery in women with an unfavorable cervix who require labor induction. J Perinat Med 2013; 41: 411–414.

    CAS  PubMed  Google Scholar 

  71. Cha J, Bartos A, Egashira M, Haraguchi H, Saito-Fujita T, Leishman E et al. Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions. J Clin Invest 2013; 123: 4063–4075.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pelham HR . Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 1986; 46: 959–961.

    CAS  PubMed  Google Scholar 

  73. Parsell DA, Lindquist S . The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 1993; 27: 437–496.

    CAS  PubMed  Google Scholar 

  74. Dokladny K, Myers OB, Moseley PL . Heat shock response and autophagy-cooperation and control. Autophagy 2015; 11: 200–213.

    PubMed  PubMed Central  Google Scholar 

  75. Dokladny K, Zuhl MN, Mandell M, Bhattacharya D, Schneider S, Deretic V et al. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 2013; 288: 14959–14972.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chou SD, Prince T, Gong J, Calderwood SK . mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One 2012; 7: e39679.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kanninen TT, Sisti G, Witkin SS . Induction of the 70 kDa heat shock protein stress response inhibits autophagy: possible consequences for pregnancy outcome. J Matern Fetal Neonatal Med 2016; 29: 159–162.

    CAS  PubMed  Google Scholar 

  78. Sisti G, Kanninen TT, Ramer I, Witkin SS . Interaction between the inducible 70-kDa heat shock protein and autophagy: effects on fertility and pregnancy. Cell Stress Chaperones 2015; 20: 753–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Romero R, Miranda J, Chaiworapongsa T, Korzeniewski SJ, Chaemsaithong P, Gotsch F et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol 2014; 72: 458–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaiworapongsa T, Erez O, Kusanovic JP, Vaisbuch E, Mazaki-Tovi S, Gotsch F et al. Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med 2008; 21: 449–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schlottmann S, Buback F, Stahl B, Meierhenrich R, Walter P, Georgieff M et al. Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediators Inflamm 2008; 2008: 725854.

    PubMed  PubMed Central  Google Scholar 

  82. Jeyasuria P, Wetzel J, Bradley M, Subedi K, Condon JC . Progesterone-regulated caspase 3 action in the mouse may play a role in uterine quiescence during pregnancy through fragmentation of uterine myocyte contractile proteins. Biol Reprod 2009; 80: 928–934.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Epstein Shochet G, Drucker L, Pasmanik-Chor M, Pomeranz M, Fishman A, Tartakover Matalon S et al. First trimester human placental factors induce breast cancer cell autophagy. Breast Cancer Res Treat 2015; 149: 645–654.

    CAS  PubMed  Google Scholar 

  84. Lollo PC, Moura CS, Morato PN, Amaya-Farfan J . Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues. J Sports Sci Med 2013; 12: 461–466.

    PubMed  PubMed Central  Google Scholar 

  85. Choux C, Carmignac V, Bruno C, Sagot P, Vaiman D, Fauque P . The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy. Clin Epigenetics 2015; 7: 87.

    PubMed  PubMed Central  Google Scholar 

  86. Malassine A, Frendo JL, Evain-Brion D . A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update 2003; 9: 531–539.

    CAS  PubMed  Google Scholar 

  87. Ratajczak CK, Fay JC, Muglia LJ . Preventing preterm birth: the past limitations and new potential of animal models. Dis Model Mech 2010; 3: 407–414.

    PubMed  Google Scholar 

  88. Witkin SS, Ledger WJ . Complexities of the uniquely human vagina. Sci Transl Med 2012; 4: 132fs11.

    PubMed  Google Scholar 

  89. Mignini LE, Khan KS . Methodological quality of systematic reviews of animal studies: a survey of reviews of basic research. BMC Med Res Methodol 2006; 6: 10.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Witkin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisti, G., Kanninen, T. & Witkin, S. Maternal immunity and pregnancy outcome: focus on preconception and autophagy. Genes Immun 17, 1–7 (2016). https://doi.org/10.1038/gene.2015.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.57

This article is cited by

Search

Quick links