Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Trichuris suis soluble products induce Rab7b expression and limit TLR4 responses in human dendritic cells

Abstract

Inflammatory immune disorders such as inflammatory bowel disease and multiple sclerosis are major health problems. Currently, the intestinal whipworm Trichuris suis is being explored in clinical trials to reduce inflammation in these diseases; however, the mechanisms by which the parasite affects the host immune system are not known. Here we determined the effects of T. suis soluble products (SPs) on Toll-like receptor-4 (TLR4)-stimulated human dendritic cells (DCs) using Illumina bead chip gene arrays. Pathway analysis of lipopolysaccharide-stimulated DCs with or without T. suis treatment showed that co-stimulation with T. suis SPs resulted in a downregulation of both the myeloid differentiation primary response gene 88-dependent and the TIR-domain-containing adaptor-inducing interferon-β-dependent signalling pathways triggered by TLR4. These data were verified using quantitative real-time PCR of several key genes within these pathways and/or defining their protein levels. In addition, T. suis SPs induce Rab7b, a negative regulator of TLR4 signalling that interferes with its trafficking, which coincided with a reduced surface expression of TLR4. These data indicate that the mechanism by which T. suis SPs reduce inflammatory responses is through suppression of both TLR4 signalling and surface expression on DCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Summers RW, Elliott DE, Urban Jr JF, Thompson R, Weinstock JV . Trichuris suis therapy in Crohn's disease. Gut 2005; 54: 87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weinstock JV, Elliott DE . Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 2009; 15: 128–133.

    Article  PubMed  Google Scholar 

  3. Fleming JO, Weinstock JV . Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Parasite Immunol 2015; 37: 277–292.

    Article  CAS  PubMed  Google Scholar 

  4. Correale J, Farez M . Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 2007; 61: 97–108.

    Article  CAS  PubMed  Google Scholar 

  5. Correale J, Farez MF . The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 2011; 233: 6–11.

    Article  CAS  PubMed  Google Scholar 

  6. Kuijk LM, van Die I . Worms to the rescue: can worm glycans protect from autoimmune diseases? IUBMB Life 2010; 62: 303–312.

    CAS  PubMed  Google Scholar 

  7. McKay DM . The therapeutic helminth? Trends Parasitol 2009; 25: 109–114.

    Article  PubMed  Google Scholar 

  8. Harnett W, McInnes IB, Harnett MM . ES-62, a filarial nematode-derived immunomodulator with anti-inflammatory potential. Immunol Lett 2004; 94: 27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M et al. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol 2003; 15: 59–69.

    Article  CAS  PubMed  Google Scholar 

  10. Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW et al. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 2003; 33: 1439–1449.

    Article  CAS  PubMed  Google Scholar 

  11. Kuijk LM, Klaver EJ, Kooij G, van der Pol SM, Heijnen P, Bruijns SC, Kringel H et al. Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012; 51: 210–218.

    Article  CAS  PubMed  Google Scholar 

  12. Klaver EJ, Kuijk LM, Laan LC, Kringel H, van Vliet SJ, Bouma G et al. Trichuris suis-induced modulation of human dendritic cell function is glycan-mediated. Int J Parasitol 2013; 43: 191–200.

    Article  CAS  PubMed  Google Scholar 

  13. Ottow MK, Klaver EJ, van der Pouw Kraan TC, Heijnen PD, Laan LC, Kringel H et al. The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages. Genes Immun 2014; 15: 477–486.

    Article  CAS  PubMed  Google Scholar 

  14. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    Article  CAS  PubMed  Google Scholar 

  15. Racke MK, Hu W, Lovett-Racke AE . PTX cruiser: driving autoimmunity via TLR4. Trends Immunol 2005; 26: 289–291.

    Article  CAS  PubMed  Google Scholar 

  16. Hennessy EJ, Parker AE, O'Neill LA . Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9: 293–307.

    Article  CAS  PubMed  Google Scholar 

  17. Palsson-McDermott EM, O'Neill LA . Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004; 113: 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamilton CM, Dowling DJ, Loscher CE, Morphew RM, Brophy PM, O'Neill SM . The Fasciola hepatica tegumental antigen suppresses dendritic cell maturation and function. Infect Immun 2009; 77: 2488–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Segura M, Su Z, Piccirillo C, Stevenson MM . Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur J Immunol 2007; 37: 1887–1904.

    Article  CAS  PubMed  Google Scholar 

  20. van Liempt E, van Vliet SJ, Engering A, Garcia Vallejo JJ, Bank CM, Sanchez-Hernandez M et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol Immunol 2007; 44: 2605–2615.

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen FE, Kempiak S, Huang DB, Phelps C, Ghosh G . Construction, expression, purification and functional analysis of recombinant NFkappaB p50/p65 heterodimer. Protein Eng 1999; 12: 423–428.

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann A, Natoli G, Ghosh G . Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006; 25: 6706–6716.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Chen T, Han C, He D, Liu H, An H et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007; 110: 962–971.

    Article  CAS  PubMed  Google Scholar 

  25. Vukman KV, Adams PN, O'Neill SM . Fasciola hepatica tegumental coat antigen suppresses MAPK signalling in dendritic cells and up-regulates the expression of SOCS3. Parasite Immunol 2013; 35: 234–238.

    Article  CAS  PubMed  Google Scholar 

  26. Puneet P, McGrath MA, Tay HK, Al-Riyami L, Rzepecka J, Moochhala SM et al. The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88. Nat Immunol 2011; 12: 344–351.

    Article  CAS  PubMed  Google Scholar 

  27. van Stijn CM, Meyer S, van den Broek M, Bruijns SC, van Kooyk Y, Geyer R et al. Schistosoma mansoni worm glycolipids induce an inflammatory phenotype in human dendritic cells by cooperation of TLR4 and DC-SIGN. Mol Immunol 2010; 47: 1544–1552.

    Article  CAS  PubMed  Google Scholar 

  28. Aloisi AL, Bucci C . Rab GTPases-cargo direct interactions: fine modulators of intracellular trafficking. Histol Histopathol 2013; 28: 839–849.

    CAS  PubMed  Google Scholar 

  29. Yao M, Liu X, Li D, Chen T, Cai Z, Cao X . Late endosome/lysosome-localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and type I IFN production in macrophages. J Immunol 2009; 183: 1751–1758.

    Article  CAS  PubMed  Google Scholar 

  30. Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C . Rab7b controls trafficking from endosomes to the TGN. J Cell Science 2010; 123: 1480–1491.

    Article  CAS  PubMed  Google Scholar 

  31. Barton GM, Kagan JC . A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9: 535–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin YC, Huang DY, Chu CL, Lin YL, Lin WW . The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013; 6: ra71.

    PubMed  Google Scholar 

  33. Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB . C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 2007; 26: 605–616.

    Article  CAS  PubMed  Google Scholar 

  34. van Vliet SJ, Bay S, Vuist IM, Kalay H, Garcia-Vallejo JJ, Leclerc C et al. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-alpha secretion. J Leukoc Biol 2013; 94: 315–323.

    Article  CAS  PubMed  Google Scholar 

  35. Gringhuis SI, Kaptein TM, Wevers BA, Mesman AW, Geijtenbeek TB . Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKepsilon- and CYLD-dependent Bcl3 activation. Nat Commun 2014; 5: 3898.

    Article  CAS  PubMed  Google Scholar 

  36. Jex AR, Nejsum P, Schwarz EM, Hu L, Young ND, Hall RS et al. Genome and transcriptome of the porcine whipworm Trichuris suis. Nat Genet 2014; 46: 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Stijn CM, van den Broek M, van de Weerd R, Visser M, Tasdelen I, Tefsen B et al. Regulation of expression and secretion of galectin-3 in human monocyte-derived dendritic cells. Mol Immunol 2009; 46: 3292–3299.

    Article  CAS  PubMed  Google Scholar 

  38. Schirmer SH, Fledderus JO, van der Laan AM, van der Pouw-Kraan TC, Moerland PD, Volger OL et al. Suppression of inflammatory signaling in monocytes from patients with coronary artery disease. J Mol Cell Cardiol 2009; 46: 177–185.

    Article  CAS  PubMed  Google Scholar 

  39. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  PubMed  Google Scholar 

  40. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Vallejo JJ, van Liempt E, da Costa Martins P, Beckers C, van het Hof B, Gringhuis SI et al. DC-SIGN mediates adhesion and rolling of dendritic cells on primary human umbilical vein endothelial cells through LewisY antigen expressed on ICAM-2. Mol Immunol 2008; 45: 2359–2369.

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Vallejo JJ, Gringhuis SI, van Dijk W, van Die I . Gene expression analysis of glycosylation-related genes by real-time polymerase chain reaction. Methods Mol Biol 2006; 347: 187–209.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by NIH Grant AI101982 to RDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I van Die.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaver, E., van der Pouw Kraan, T., Laan, L. et al. Trichuris suis soluble products induce Rab7b expression and limit TLR4 responses in human dendritic cells. Genes Immun 16, 378–387 (2015). https://doi.org/10.1038/gene.2015.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.18

This article is cited by

Search

Quick links