Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An ENU-induced splicing mutation reveals a role for Unc93b1 in early immune cell activation following influenza A H1N1 infection

Subjects

Abstract

Genetic and immunological analysis of host–pathogen interactions can reveal fundamental mechanisms of susceptibility and resistance to infection. Modeling human infectious diseases among inbred mouse strains is a proven approach but is limited by naturally occurring genetic diversity. Using N-ethyl-N-nitrosourea mutagenesis, we created a recessive loss-of-function point mutation in Unc93b1 (unc-93 homolog B1 (C. elegans)), a chaperone for endosomal Toll-like receptors (TLR)3, TLR7 and TLR9, which we termed Letr for ‘loss of endosomal TLR response’. We used Unc93b1Letr/Letr mice to study the role of Unc93b1 in the immune response to influenza A/PR/8/34 (H1N1), an important global respiratory pathogen. During the early phase of infection, Unc93b1Letr/Letr mice had fewer activated exudate macrophages and decreased expression of CXCL10, interferon (IFN)-γ and type I IFN. Mutation of Unc93b1 also led to reduced expression of the CD69 activation marker and a concomitant increase in the CD62L naive marker on CD4+ and CD8+ T cells in infected lungs. Finally, loss of endosomal TLR signaling resulted in delayed viral clearance that coincided with increased tissue pathology during infection. Taken together, these findings establish a role for Unc93b1 and endosomal TLRs in the activation of both myeloid and lymphoid cells during the innate immune response to influenza.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fauci AS . Seasonal and pandemic influenza preparedness: science and countermeasures. J Infect Dis 2006; 194 (Suppl 2): S73–S76.

    Article  PubMed  Google Scholar 

  2. WHOInfluenza Fact Sheet No.211. In 2009.

  3. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009; 324: 1557–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neumann G, Noda T, Kawaoka Y . Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 2009; 459: 931–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker WH, Mullooly JP . Impact of epidemic type A influenza in a defined adult population. Am J Epidemiol 1980; 112: 798–811.

    Article  CAS  PubMed  Google Scholar 

  6. Toapanta FR, Ross TM . Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 2009; 10: 112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Webster RG . Immunity to influenza in the elderly. Vaccine 2000; 18: 1686–1689.

    Article  CAS  PubMed  Google Scholar 

  8. Morens DM, Taubenberger JK, Fauci AS . Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–970.

    Article  PubMed  Google Scholar 

  9. Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM . H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 2008; 4: e1000115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kohlmeier JE, Woodland DL . Immunity to respiratory viruses. Annu Rev Immunol 2009; 27: 61–82.

    Article  CAS  PubMed  Google Scholar 

  11. Ho AW, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J Immunol 2011; 187: 6011–6021.

    Article  CAS  PubMed  Google Scholar 

  12. Ingulli E, Funatake C, Jacovetty EL, Zanetti M . Cutting edge: antigen presentation to CD8 T cells after influenza A virus infection. J Immunol 2009; 182: 29–33.

    Article  CAS  PubMed  Google Scholar 

  13. Kim TS, Braciale TJ . Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS One 2009; 4: e4204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA . Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 2001; 193: 51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waithman J, Mintern JD . Dendritic cells and influenza A virus infection. Virulence 2012; 3: 603–608.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  17. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 2005; 280: 5571–5580.

    Article  CAS  PubMed  Google Scholar 

  18. Koyama S, Ishii KJ, Kumar H, Tanimoto T, Coban C, Uematsu S et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 2007; 179: 4711–4720.

    Article  CAS  PubMed  Google Scholar 

  19. Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M et al. Cutting Edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 2007; 178: 3368–3372.

    Article  CAS  PubMed  Google Scholar 

  20. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004; 101: 5598–5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM . The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 2007; 177: 265–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL . UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 2008; 452: 234–238.

    Article  CAS  PubMed  Google Scholar 

  23. Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006; 7: 156–164.

    Article  CAS  PubMed  Google Scholar 

  24. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T . TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 2003; 4: 161–167.

    Article  CAS  PubMed  Google Scholar 

  25. Seo SU, Kwon HJ, Song JH, Byun YH, Seong BL, Kawai T et al. MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection. J Virol 2010; 84: 12713–12722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 2007; 178: 2182–2191.

    Article  CAS  PubMed  Google Scholar 

  27. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009; 30: 556–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2006; 2: e53.

    Article  PubMed  CAS  Google Scholar 

  29. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR . Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006; 80: 5059–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hidaka F, Matsuo S, Muta T, Takeshige K, Mizukami T, Nunoi H . A missense mutation of the Toll-like receptor 3 gene in a patient with influenza-associated encephalopathy. Clin Immunol 2006; 119: 188–194.

    Article  CAS  PubMed  Google Scholar 

  31. Horby P, Nguyen NY, Dunstan SJ, Baillie JK . The role of host genetics in susceptibility to influenza: a systematic review. PLoS ONE 2012; 7: e33180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox RD, Brown SD . ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 2008; 9: 49–69.

    Article  CAS  PubMed  Google Scholar 

  33. Buer J, Balling R . Mice, microbes and models of infection. Nat Rev Genet 2003; 4: 195–205.

    Article  CAS  PubMed  Google Scholar 

  34. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A . Mouse ENU mutagenesis. Hum Mol Genet 1999; 8: 1955–1963.

    Article  CAS  PubMed  Google Scholar 

  35. Richer E, Qureshi ST, Vidal SM, Malo D . Chemical mutagenesis: a new strategy against the global threat of infectious diseases. Mamm Genome 2008; 19: 309–317.

    Article  CAS  PubMed  Google Scholar 

  36. Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB et al. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe 2013; 13: 42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caetano BC, Carmo BB, Melo MB, Cerny A, dos Santos SL, Bartholomeu DC et al. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. J Immunol 2011; 187: 1903–1911.

    Article  CAS  PubMed  Google Scholar 

  38. Melo MB, Kasperkovitz P, Cerny A, Konen-Waisman S, Kurt-Jones EA, Lien E et al. UNC93B1 mediates host resistance to infection with Toxoplasma gondii. PLoS Pathog 2010; 6: e1001071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pifer R, Benson A, Sturge CR, Yarovinsky F . UNC93B1 is essential for TLR11 activation and IL-12-dependent host resistance to Toxoplasma gondii. J Biol Chem 2011; 286: 3307–3314.

    Article  CAS  PubMed  Google Scholar 

  40. Schamber-Reis BL, Petritus PM, Caetano BC, Martinez ER, Okuda K, Golenbock D et al. UNC93B1 and nucleic acid-sensing Toll-like receptors mediate host resistance to infection with Leishmania major. J Biol Chem 2013; 288: 7127–7136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 2006; 314: 308–312.

    Article  CAS  PubMed  Google Scholar 

  42. Crane MJ, Gaddi PJ, Salazar-Mather TP . UNC93B1 mediates innate inflammation and antiviral defense in the liver during acute murine cytomegalovirus infection. PLoS One 2012; 7: e39161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM et al. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol 2012; 86: 2273–2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esen N, Blakely PK, Rainey-Barger EK, Irani DN . Complexity of the microglial activation pathways that drive innate host responses during lethal alphavirus encephalitis in mice. ASN Neuro 2012; 4: 207–221.

    Article  CAS  PubMed  Google Scholar 

  45. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  PubMed  Google Scholar 

  46. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3: 196–200.

    Article  CAS  PubMed  Google Scholar 

  47. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  PubMed  Google Scholar 

  48. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443–451.

    Article  CAS  PubMed  Google Scholar 

  49. Kashuba VI, Protopopov AI, Kvasha SM, Gizatullin RZ, Wahlestedt C, Kisselev LL et al. hUNC93B1: a novel human gene representing a new gene family and encoding an unc-93-like protein. Gene 2002; 283: 209–217.

    Article  CAS  PubMed  Google Scholar 

  50. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  PubMed  Google Scholar 

  51. Short KR, Brooks AG, Reading PC, Londrigan SL . The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 2012; 93 (Pt 11): 2315–2325.

    Article  CAS  PubMed  Google Scholar 

  52. Thomas PG, Dash P, Aldridge JR Jr., Ellebedy AH, Reynolds C, Funk AJ et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 2009; 30: 566–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown DM, Dilzer AM, Meents DL, Swain SL . CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J Immunol 2006; 177: 2888–2898.

    Article  CAS  PubMed  Google Scholar 

  54. Brown DM, Lee S, Garcia-Hernandez Mde L, Swain SL . Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 2012; 86: 6792–6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hufford MM, Kim TS, Sun J, Braciale TJ . Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J Exp Med 2011; 208: 167–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roman E, Miller E, Harmsen A, Wiley J, Von Andrian UH, Huston G et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 2002; 196: 957–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–105.

    Article  CAS  PubMed  Google Scholar 

  58. Mykkanen J, Torrents D, Pineda M, Camps M, Yoldi ME, Horelli-Kuitunen N et al. Functional analysis of novel mutations in y(+)LAT-1 amino acid transporter gene causing lysinuric protein intolerance (LPI). Hum Mol Genet 2000; 9: 431–438.

    Article  CAS  PubMed  Google Scholar 

  59. Chen LY, Lin B, Pan CJ, Hiraiwa H, Chou JY . Structural requirements for the stability and microsomal transport activity of the human glucose 6-phosphate transporter. J Biol Chem 2000; 275: 34280–34286.

    Article  CAS  PubMed  Google Scholar 

  60. Fukui R, Saitoh S, Kanno A, Onji M, Shibata T, Ito A et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 2011; 35: 69–81.

    Article  CAS  PubMed  Google Scholar 

  61. Fukui R, Saitoh S, Matsumoto F, Kozuka-Hata H, Oyama M, Tabeta K et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med 2009; 206: 1339–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herold S, von Wulffen W, Steinmueller M, Pleschka S, Kuziel WA, Mack M et al. Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: impact of chemokines and adhesion molecules. J Immunol 2006; 177: 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  63. Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD . CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol 2008; 180: 2562–2572.

    Article  CAS  PubMed  Google Scholar 

  64. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exp Med 2008; 205: 3065–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES . Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005; 307: 1630–1634.

    Article  CAS  PubMed  Google Scholar 

  66. Lopez CB, Moltedo B, Alexopoulou L, Bonifaz L, Flavell RA, Moran TM . TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J Immunol 2004; 173: 6882–6889.

    Article  CAS  PubMed  Google Scholar 

  67. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A . Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 2009; 206: 79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19–28.

    Article  CAS  PubMed  Google Scholar 

  69. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006; 314: 997–1001.

    Article  CAS  PubMed  Google Scholar 

  70. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  71. Lawrence CW, Braciale TJ . Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J Immunol 2004; 173: 1209–1218.

    Article  CAS  PubMed  Google Scholar 

  72. Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol 2005; 175: 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  73. Gelman AE, Zhang J, Choi Y, Turka LA . Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol 2004; 172: 6065–6073.

    Article  CAS  PubMed  Google Scholar 

  74. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al. Quantitative expression of Toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002; 168: 4531–4537.

    Article  CAS  PubMed  Google Scholar 

  75. Kabelitz D . Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 2007; 19: 39–45.

    Article  CAS  PubMed  Google Scholar 

  76. Kulkarni R, Behboudi S, Sharif S . Insights into the role of Toll-like receptors in modulation of T cell responses. Cell Tissue Res 2011; 343: 141–152.

    Article  CAS  PubMed  Google Scholar 

  77. Funderburg N, Luciano AA, Jiang W, Rodriguez B, Sieg SF, Lederman MM . Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS ONE 2008; 3: e1915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Tabiasco J, Devevre E, Rufer N, Salaun B, Cerottini JC, Speiser D et al. Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 2006; 177: 8708–8713.

    Article  CAS  PubMed  Google Scholar 

  79. LaRosa DF, Stumhofer JS, Gelman AE, Rahman AH, Taylor DK, Hunter CA et al. T cell expression of MyD88 is required for resistance to Toxoplasma gondii. Proc Natl Acad Sci USA 2008; 105: 3855–3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rahman AH, Cui W, Larosa DF, Taylor DK, Zhang J, Goldstein DR et al. MyD88 plays a critical T cell-intrinsic role in supporting CD8 T cell expansion during acute lymphocytic choriomeningitis virus infection. J Immunol 2008; 181: 3804–3810.

    Article  CAS  PubMed  Google Scholar 

  81. Song Y, Zhuang Y, Zhai S, Huang D, Zhang Y, Kang W et al. Increased expression of TLR7 in CD8(+) T cells leads to TLR7-mediated activation and accessory cell-dependent IFN-gamma production in HIV type 1 infection. AIDS Res Hum Retroviruses 2009; 25: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  82. Pang IK, Ichinohe T, Iwasaki A . IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8(+) T cell responses to influenza A virus. Nat Immunol 2013; 14: 246–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matikainen S, Paananen A, Miettinen M, Kurimoto M, Timonen T, Julkunen I et al. IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 2001; 31: 2236–2245.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, Law HK, Cheung CY, Ng IH, Peiris JS, Lau YL . Differential expression of chemokines and their receptors in adult and neonatal macrophages infected with human or avian influenza viruses. J Infect Dis 2006; 194: 61–70.

    Article  CAS  PubMed  Google Scholar 

  85. Tighe RM, Liang J, Liu N, Jung Y, Jiang D, Gunn MD et al. Recruited exudative macrophages selectively produce CXCL10 after noninfectious lung injury. Am J Respir Cell Mol Biol 2011; 45: 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Richer E, Prendergast C, Zhang DE, Qureshi ST, Vidal SM, Malo D . N-ethyl-N-nitrosourea-induced mutation in ubiquitin-specific peptidase 18 causes hyperactivation of IFN-alphass signaling and suppresses STAT4-induced IFN-gamma production, resulting in increased susceptibility to Salmonella typhimurium. J Immunol 2010; 185: 3593–3601.

    Article  CAS  PubMed  Google Scholar 

  87. Cook MC, Vinuesa CG, Goodnow CC . ENU-mutagenesis: insight into immune function and pathology. Curr Opin Immunol 2006; 18: 627–633.

    Article  CAS  PubMed  Google Scholar 

  88. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology 2011; 7: 539.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kelley LA, Sternberg MJ . Protein structure prediction on the Web: a case study using the Phyre server. Nat Prot 2009; 4: 363–371.

    Article  CAS  Google Scholar 

  90. The PyMol Molecular Graphics System. version 1.7: Schrödinger, LLC.

  91. Brown EG . Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8. J Virol 1990; 64: 4523–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gregory Boivin and François Coulombe for advice with experimental procedures, Marie-Line Goulet for advice on experimental design as well as helpful comments on the manuscript, and Dr David Logan Burk for help with three-dimensional protein modeling. We also acknowledge Dr Veronika von Messling and Dr Maziar Divangahi for providing materials and advice on working with the influenza virus. This work was supported by a CIHR Team Grant in Mouse Mutagenesis and Infectious Diseases (CTP-87520), a Canada Research Chair in Host Resistance to Respiratory Infections (STQ) and the Fonds de Recherche du Québec—Santé. EIL is a recipient of awards from the CIHR Québec Respiratory Health Training Program, the McGill University Health Centre and the McGill University Faculty of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Qureshi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafferty, E., Flaczyk, A., Angers, I. et al. An ENU-induced splicing mutation reveals a role for Unc93b1 in early immune cell activation following influenza A H1N1 infection. Genes Immun 15, 320–332 (2014). https://doi.org/10.1038/gene.2014.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.22

This article is cited by

Search

Quick links