Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide expression analysis suggests unique disease-promoting and disease-preventing signatures in Pemphigus vulgaris

Abstract

To evaluate pathogenetic mechanisms underlying disease development and progression in the autoimmune skin disease Pemphigus vulgaris (PV), we examined global peripheral blood gene expression in patients and healthy controls. Our goals were to: (1) assign blood gene expression signatures to patients and controls; (2) identify differentially expressed genes (DEGs) and investigate functional pathways associated with these signatures; and (3) evaluate the distribution of DEGs across the genome to identify transcriptional ‘hot spots’. Unbiased hierarchical clustering clearly separated patients from human leukocyte antigen (HLA)-matched controls (MCRs; ‘disease’ signature), and active from remittent patients (‘activity’ signature). DEGs associated with these signatures are involved in immune response, cytoskeletal reorganization, mitogen-activated protein kinase (MAPK) signaling, oxidation-reduction and apoptosis. We further found that MCRs carrying the PV-associated HLA risk alleles cluster distinctly from unmatched controls (UMCR) revealing an HLA-associated ‘control’ signature. A subset of DEGs within the ‘control’ signature overlap with the ‘disease’ signature, but are inversely regulated in MCR when compared with either PV patients or UMCR, suggesting the existence of a ‘protection’ signature in healthy individuals carrying the PV HLA genetic risk elements. Finally, we identified 19 transcriptional ‘hot spots’ across the signatures, which may guide future studies aimed at pinpointing disease risk genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gupta VK, Kelbel TE, Nguyen D, Melonakos KC, Murrell DF, Xie Y et al. A globally available internet-based patient survey of pemphigus vulgaris: epidemiology and disease characteristics. Dermatol Clin 2011; 29: 393–404.

    Article  CAS  Google Scholar 

  2. Langan SM, Smeeth L, Hubbard R, Fleming KM, Smith CJ, West J . Bullous pemphigoid and pemphigus vulgaris--incidence and mortality in the UK: population based cohort study. BMJ 2008; 337: a180.

    Article  CAS  Google Scholar 

  3. Bystryn JC, Rudolph JL . Pemphigus. Lancet 2005; 366: 61–73.

    Article  Google Scholar 

  4. Sinha AA . The genetics of pemphigus. Dermatol Clin 2011; 29: 381–391.

    Article  CAS  Google Scholar 

  5. Coda AB, Qafalijaj Hysa V, Seiffert-Sinha K, Sinha AA . Peripheral blood gene expression in alopecia areata reveals molecular pathways distinguishing heritability, disease and severity. Genes Immunity 2010; 11: 531–541.

    Article  CAS  Google Scholar 

  6. Kunz M . DNA microarray technology in dermatology. Semin Cutan Med Surg 2008; 27: 16–24.

    Article  CAS  Google Scholar 

  7. Oertelt S, Selmi C, Invernizzi P, Podda M, Gershwin ME . Genes and goals: an approach to microarray analysis in autoimmunity. Autoimmunity Rev 2005; 4: 414–422.

    Article  CAS  Google Scholar 

  8. Orban T, Kis J, Szereday L, Engelmann P, Farkas K, Jalahej H et al. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 2007; 28: 177–187.

    Article  CAS  Google Scholar 

  9. Fossey SC, Vnencak-Jones CL, Olsen NJ, Sriram S, Garrison G, Deng X et al. Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn 2007; 9: 197–204.

    Article  CAS  Google Scholar 

  10. Sinha AA, Lopez MT, McDevitt HO . Autoimmune diseases: the failure of self tolerance. Science 1990; 248: 1380–1388.

    Article  CAS  Google Scholar 

  11. Murrell DF, Dick S, Ahmed AR, Amagai M, Barnadas MA, Borradori L et al. Consensus statement on definitions of disease, end points, and therapeutic response for pemphigus. J Am Acad Dermatol 2008; 58: 1043–1046.

    Article  Google Scholar 

  12. Rizzo C, Fotino M, Zhang Y, Chow S, Spizuoco A, Sinha AA . Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Exper Dermatol 2005; 30: 535–540.

    Article  CAS  Google Scholar 

  13. Ouyang W, Kolls JK, Zheng Y . The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28: 454–467.

    Article  CAS  Google Scholar 

  14. Paunovic V, Carroll HP, Vandenbroeck K, Gadina M . Signalling, inflammation and arthritis: crossed signals: the role of interleukin (IL)-12, -17, -23 and -27 in autoimmunity. Rheumatology (Oxford) 2008; 47: 771–776.

    Article  CAS  Google Scholar 

  15. Grando SA, Bystryn JC, Chernyavsky AI, Frusic-Zlotkin M, Gniadecki R, Lotti R et al. Apoptolysis: a novel mechanism of skin blistering in pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis. Exp Dermatol 2009; 18: 764–770.

    Article  CAS  Google Scholar 

  16. Bektas M, Jolly P, Rubenstein DS . Apoptotic pathways in pemphigus. Dermatol Res Practice 2010; 2010: 456841.

    Article  Google Scholar 

  17. Grando SA, Glukhenky BT, Drannik GN, Epshtein EV, Kostromin AP, Korostash TA . Mediators of inflammation in blister fluids from patients with pemphigus vulgaris and bullous pemphigoid. Arch Dermatol 1989; 125: 925–930.

    Article  CAS  Google Scholar 

  18. Takahashi H, Kouno M, Nagao K, Wada N, Hata T, Nishimoto S et al. Desmoglein 3-specific CD4+ T cells induce pemphigus vulgaris and interface dermatitis in mice. J Clin Invest 2011; 121: 3677–3688.

    Article  CAS  Google Scholar 

  19. Bystryn JC, Grando S . The cause of acantholysis in pemphigus: further support for the 'basal cell shrinkage' hypothesis. Br J Dermatol 2009; 161: 702.

    Article  Google Scholar 

  20. Lotti R, Marconi A, Pincelli C . Apoptotic pathways in the pathogenesis of pemphigus: targets for new therapies. Curr Pharm Biotechnol 2012; 13: 1877–1881.

    Article  CAS  Google Scholar 

  21. Majore S, Biolcati G, Barboni L, Cannistraci C, Binni F, Crisi A et al. ATP2C1 gene mutation analysis in Italian patients with Hailey-Hailey disease. J Invest Dermatol 2005; 125: 933–935.

    Article  CAS  Google Scholar 

  22. Kalantari-Dehaghi M, Anhalt GJ, Camilleri MJ, Chernyavsky AI, Chun S, Felgner PL et al. Pemphigus vulgaris autoantibody profiling by proteomic technique. PLoS One 2013; 8: e57587.

    Article  CAS  Google Scholar 

  23. Kitajima Y . Mechanisms of desmosome assembly and disassembly. Clin Exp Dermatol 2002; 27: 684–690.

    Article  CAS  Google Scholar 

  24. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O . Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 2001; 276: 4972–4980.

    Article  CAS  Google Scholar 

  25. Dusek RL, Getsios S, Chen F, Park JK, Amargo EV, Cryns VL et al. The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J Biol Chem 2006; 281: 3614–3624.

    Article  CAS  Google Scholar 

  26. Amagai M . Pemphigus as a paradigm of autoimmunity and cell adhesion. Keio J Med 2002; 51: 133–139.

    Article  CAS  Google Scholar 

  27. Ellebrecht CT, Srinivas G, Bieber K, Banczyk D, Kinzel S, Kalies K et al. Microbial diversity and cutaneous inflammation are predictive for the clinical course of experimental epidermolysis bullosa acquisita. J Invest Dermatol 2013; 133 (Supplement 1): S21.

    Google Scholar 

  28. Sarig O, Bercovici S, Zoller L, Goldberg I, Indelman M, Nahum S et al. Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol 2012; 132: 1798–1805.

    Article  CAS  Google Scholar 

  29. Lanza A, Cirillo N, Rossiello R, Rienzo M, Cutillo L, Casamassimi A et al. Evidence of key role of Cdk2 overexpression in pemphigus vulgaris. J Biol Chem 2008; 283: 8736–8745.

    Article  CAS  Google Scholar 

  30. Cirillo N, Lanza M, Rossiello L, Gombos F, Lanza A . Defining the involvement of proteinases in pemphigus vulgaris: evidence of matrix metalloproteinase-9 overexpression in experimental models of disease. J Cell Physiol 2007; 212: 36–41.

    Article  CAS  Google Scholar 

  31. Nguyen VT, Arredondo J, Chernyavsky AI, Kitajima Y, Pittelkow M, Grando SA . Pemphigus vulgaris IgG and methylprednisolone exhibit reciprocal effects on keratinocytes. J Biol Chem 2004; 279: 2135–2146.

    Article  CAS  Google Scholar 

  32. Sinha AA, Brautbar C, Szafer F, Friedmann A, Tzfoni E, Todd JA et al. A newly characterized HLA DQ beta allele associated with pemphigus vulgaris. Science 1988; 239: 1026–1029.

    Article  CAS  Google Scholar 

  33. Tron F, Gilbert D, Mouquet H, Joly P, Drouot L, Makni S et al. Genetic factors in pemphigus. J Autoimmun 2005; 24: 319–328.

    Article  CAS  Google Scholar 

  34. Lee E, Lendas KA, Chow S, Pirani Y, Gordon D, Dionisio R et al. Disease relevant HLA class II alleles isolated by genotypic, haplotypic, and sequence analysis in North American Caucasians with pemphigus vulgaris. Hum Immunol 2006; 67: 125–139.

    Article  CAS  Google Scholar 

  35. Sarig O, Vodo D, Rosser Sea . A GWAS analysis identifies non-HLA genes within the MHC locus as associated with pemphigus vulgaris. J Invest Dermatol 2013; 133 (Supplement 1): s34.

    Google Scholar 

  36. Waschke J, Spindler V, Bruggeman P, Zillikens D, Schmidt G, Drenckhahn D . Inhibition of Rho A activity causes pemphigus skin blistering. J Cell Biol 2006; 175: 721–727.

    Article  CAS  Google Scholar 

  37. Berkowitz P, Hu P, Warren S, Liu Z, Diaz LA, Rubenstein DS . p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci USA 2006; 103: 12855–12860.

    Article  CAS  Google Scholar 

  38. Jolly PS, Berkowitz P, Bektas M, Lee HE, Chua M, Diaz LA et al. p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. J Biol Chem 2010; 285: 8936–8941.

    Article  CAS  Google Scholar 

  39. Marchenko S, Chernyavsky AI, Arredondo J, Gindi V, Grando SA . Antimitochondrial autoantibodies in pemphigus vulgaris: a missing link in disease pathophysiology. J Biol Chem 2010; 285: 3695–3704.

    Article  CAS  Google Scholar 

  40. Spindler V, Drenckhahn D, Zillikens D, Waschke J . Pemphigus IgG causes skin splitting in the presence of both desmoglein 1 and desmoglein 3. Am J Pathol 2007; 171: 906–916.

    Article  CAS  Google Scholar 

  41. Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J 2006; 25: 3298–3309.

    Article  CAS  Google Scholar 

  42. Chernyavsky AI, Arredondo J, Piser T, Karlsson E, Grando SA . Differential coupling of M1 muscarinic and alpha7 nicotinic receptors to inhibition of pemphigus acantholysis. J Biol Chem 2008; 283: 3401–3408.

    Article  CAS  Google Scholar 

  43. Moon SY, Zheng Y . Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 2003; 13: 13–22.

    Article  CAS  Google Scholar 

  44. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    Article  CAS  Google Scholar 

  45. Best A, Ahmed S, Kozma R, Lim L . The Ras-related GTPase Rac1 binds tubulin. J Biol Chem 1996; 271: 3756–3762.

    Article  CAS  Google Scholar 

  46. Fania L, Zampetti A, Guerriero G, Feliciani C . Alteration of cholinergic system in keratinocites cells produces acantholysis: a possible use of cholinergic drugs in Pemphigus Vulgaris. Anti-inflamm Anti-allergy Agents Med Chem 2012; 11: 238–242.

    Article  CAS  Google Scholar 

  47. Chernyavsky AI, Nguyen VT, Arredondo J, Ndoye A, Zia S, Wess J et al. The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion. Life Sci 2003; 72: 2069–2073.

    Article  CAS  Google Scholar 

  48. Grando SA . Pemphigus in the XXI century: new life to an old story. Autoimmunity 2006; 39: 521–530.

    Article  CAS  Google Scholar 

  49. Nguyen VT, Ndoye A, Grando SA . Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. Am J Pathol 2000; 157: 1377–1391.

    Article  CAS  Google Scholar 

  50. Grando SA . Pemphigus autoimmunity: hypotheses and realities. Autoimmunity 2012; 45: 7–35.

    Article  CAS  Google Scholar 

  51. Hassfeld W, Steiner G, Studnicka-Benke A, Skriner K, Graninger W, Fischer I et al. Autoimmune response to the spliceosome. An immunologic link between rheumatoid arthritis, mixed connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum 1995; 38: 777–785.

    Article  CAS  Google Scholar 

  52. Gliem M, Heupel WM, Spindler V, Harms GS, Waschke J . Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris. Am J Physiol Cell Physiol 2010; 299: C606–C613.

    Article  CAS  Google Scholar 

  53. Zhang L, Deng M, Parthasarathy R, Wang L, Mongan M, Molkentin JD et al. MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol 2005; 25: 60–65.

    Article  Google Scholar 

  54. Zanet J, Freije A, Ruiz M, Coulon V, Sanz JR, Chiesa J et al. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication. PLoS One 2010; 5: e15701.

    Article  CAS  Google Scholar 

  55. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, Kodama K et al. FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Genome Biol 2008; 9: R170.

    Article  Google Scholar 

  56. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 2007; 116: 2260–2268.

    Article  CAS  Google Scholar 

  57. Olerup O, Zetterquist H . HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39: 225–235.

    Article  CAS  Google Scholar 

  58. Coda AB, Icen M, Smith JR, Sinha AA . Global transcriptional analysis of psoriatic skin and blood confirms known disease-associated pathways and highlights novel genomic ‘hot spots’ for differentially expressed genes. Genomics 2012; 100: 18–26.

    Article  CAS  Google Scholar 

  59. Benjamini Y . Controlling the False DIscovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B 1995; 57: 289–300.

    Google Scholar 

  60. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35 Web Server issue W169–W175.

    Article  Google Scholar 

  61. Shmelkov E, Tang Z, Aifantis I, Statnikov A . Assessing quality and completeness of human transcriptional regulatory pathways on a genome-wide scale. Biol Direct 2011; 6: 15.

    Article  Google Scholar 

  62. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for resources provided by The Research Technology Support Facility and the Genomics Core at Michigan State University. We thank Venice Cercado for technical assistance in extracting RNA and performing the microarray studies. Finally, we thank the study participants without whom this study would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Sinha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey-Rao, R., Seiffert-Sinha, K. & Sinha, A. Genome-wide expression analysis suggests unique disease-promoting and disease-preventing signatures in Pemphigus vulgaris. Genes Immun 14, 487–499 (2013). https://doi.org/10.1038/gene.2013.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.44

Keywords

Search

Quick links