Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synovial expression of Th17-related and cancer-associated genes is regulated by the arthritis severity locus Cia10

Abstract

We have previously identified Cia10 as an arthritis severity and articular damage quantitative trait locus. In this study, we used Illumina RatRef-12 microarrays to analyze the expression of 21 922 genes in synovial tissues from arthritis-susceptible DA and arthritis-protected DA.ACI(Cia10) congenics with pristane-induced arthritis. 310 genes had significantly different expression. The genes upregulated in DA, and reciprocally downregulated in DA.ACI(Cia10) included IL-11, Ccl12 and Cxcl10, as well as genes implicated in Th17 responses such as IL-17A, IL-6, Ccr6, Cxcr3 and Stat4. Suppressors of immune responses Tgfb and Vdr, and inhibitors of oxidative stress were upregulated in congenics. There was an over-representation of genes implicated in cancer and cancer-related phenotypes such as tumor growth and invasion among the differentially expressed genes. Cancer-favoring genes like Ctsd, Ikbke, and Kras were expressed in increased levels in DA, whereas inhibitors of cancer phenotypes such as Timp2, Reck and Tgfbr3 were increased in DA.ACI(Cia10). These results suggest that Cia10 may control arthritis severity, synovial hyperplasia and joint damage via the regulation of the expression of cancer-related genes, inflammatory mediators and Th17-related markers. These new findings have the potential to generate new targets for therapies aimed at reducing arthritis severity and joint damage in rheumatoid arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gregersen PK, Plenge RM, Gulko PS . Genetics of rheumatoid arthritis. In: Firestein G, Panayi G, Wollheim FA (eds) Rheumatoid arthritis second edn Oxford University Press: New York, 2006, pp 3–14.

    Google Scholar 

  2. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  Google Scholar 

  3. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77: 1044–1060.

    Article  CAS  Google Scholar 

  4. Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 2007; 4: e278.

    Article  Google Scholar 

  5. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N Engl J Med 2007; 357: 1199–1209.

    Article  CAS  Google Scholar 

  6. Gulko PS, Kawahito Y, Remmers EF, Reese VR, Wang J, Dracheva SV et al. Identification of a new non-major histocompatibility complex genetic locus on chromosome 2 that controls disease severity in collagen-induced arthritis in rats. Arthritis Rheum 1998; 41: 2122–2131.

    Article  CAS  Google Scholar 

  7. Brenner M, Meng H, Yarlett N, Griffiths M, Remmers E, Wilder R et al. The non-MHC quantitative trait locus Cia10 contains a major arthritis gene and regulates disease severity, pannus formation and joint damage. Arthritis Rheum. 2005; 52: 322–332.

    Article  CAS  Google Scholar 

  8. Alonzi T, Fattori E, Lazzaro D, Costa P, Probert L, Kollias G et al. Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 1998; 187: 461–468.

    Article  CAS  Google Scholar 

  9. Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 2004; 50: 1761–1769.

    Article  CAS  Google Scholar 

  10. Wong PK, Campbell IK, Robb L, Wicks IP . Endogenous IL-11 is pro-inflammatory in acute methylated bovine serum albumin/interleukin-1-induced (mBSA/IL-1)arthritis. Cytokine 2005; 29: 72–76.

    Article  CAS  Google Scholar 

  11. Walmsley M, Butler DM, Marinova-Mutafchieva L, Feldmann M . An anti-inflammatory role for interleukin-11 in established murine collagen-induced arthritis. Immunology 1998; 95: 31–37.

    Article  CAS  Google Scholar 

  12. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010; 42: 508–514.

    Article  CAS  Google Scholar 

  13. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA . CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 2003; 100: 10878–10883.

    Article  CAS  Google Scholar 

  14. Syversen SW, Goll GL, Haavardsholm EA, Boyesen P, Lea T, Kvien TK . A high serum level of eotaxin (CCL 11) is associated with less radiographic progression in early rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R28.

    Article  Google Scholar 

  15. Putoczki T, Ernst M . More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol 2010; 88: 1109–1117.

    Article  CAS  Google Scholar 

  16. Lane AA, Chabner BA . Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009; 27: 5459–5468.

    Article  CAS  Google Scholar 

  17. Mattey DL, Hutchinson D, Dawes PT, Nixon NB, Clarke S, Fisher J et al. Smoking and disease severity in rheumatoid arthritis: association with polymorphism at the glutathione S-transferase M1 locus. Arthritis Rheum 2002; 46: 640–646.

    Article  CAS  Google Scholar 

  18. Bunting K, Rao S, Hardy K, Woltring D, Denyer GS, Wang J et al. Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappa B transcription factor c-Rel. J Immunol 2007; 178: 7097–7109.

    Article  CAS  Google Scholar 

  19. Krause D, Schleusser B, Herborn G, Rau R . Response to methotrexate treatment is associated with reduced mortality in patients with severe rheumatoid arthritis. Arthritis Rheum 2000; 43: 14–21.

    Article  CAS  Google Scholar 

  20. Navarro-Cano G, Del Rincon I, Pogosian S, Roldan JF, Escalante A . Association of mortality with disease severity in rheumatoid arthritis, independent of comorbidity. Arthritis Rheum 2003; 48: 2425–2433.

    Article  Google Scholar 

  21. Bruhl H, Cihak J, Schneider MA, Plachy J, Rupp T, Wenzel I et al. Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 2004; 172: 890–898.

    Article  Google Scholar 

  22. Bruhl H, Mack M, Niedermeier M, Lochbaum D, Scholmerich J, Straub RH . Functional expression of the chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford) 2008; 47: 1771–1774.

    Article  CAS  Google Scholar 

  23. Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 2005; 35: 1347–1359.

    Article  CAS  Google Scholar 

  24. Nanki T, Urasaki Y, Imai T, Nishimura M, Muramoto K, Kubota T et al. Inhibition of fractalkine ameliorates murine collagen-induced arthritis. J Immunol 2004; 173: 7010–7016.

    Article  CAS  Google Scholar 

  25. Laragione T, Brenner M, Sherry B, Gulko PS . CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum 2011; 63: 3274–3283.

    Article  CAS  Google Scholar 

  26. Mohan K, Issekutz TB . Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 2007; 179: 8463–8469.

    Article  CAS  Google Scholar 

  27. Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA . Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci USA 1992; 89: 7375–7379.

    Article  CAS  Google Scholar 

  28. Srviastava MD, DeLuca H, Ambrus JL . Inhibition of IL-6 and IL-8 production in human fibroblast cell lines by 1,25 (OH)2 vitamin D3 and two of its analogs with lower calcemic activity. Res Commun Chem Pathol Pharmacol 1994; 83: 145–150.

    CAS  PubMed  Google Scholar 

  29. Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN . 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis. PLoS One 2010; 5: e12925.

    Article  Google Scholar 

  30. Tsuji M, Fujii K, Nakano T, Nishii Y . 1 alpha-hydroxyvitamin D3 inhibits type II collagen-induced arthritis in rats. FEBS Lett 1994; 337: 248–250.

    Article  CAS  Google Scholar 

  31. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 2007; 204: 2803–2812.

    Article  CAS  Google Scholar 

  32. Hueber AJ, Asquith DL, Miller AM, Reilly J, Kerr S, Leipe J et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J Immunol 2010; 184: 3336–3340.

    Article  CAS  Google Scholar 

  33. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW et al. STAT4 and risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977–986: In press.

    Article  CAS  Google Scholar 

  34. Han Z, Boyle DL, Manning AM, Firestein GS . AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 1998; 28: 197–208.

    Article  CAS  Google Scholar 

  35. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA et al. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 1998; 95: 13859–13864.

    Article  CAS  Google Scholar 

  36. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40: 1216–1223.

    Article  CAS  Google Scholar 

  37. Muller-Ladner U, Kriegsmann J, Gay RE, Gay S . Oncogenes in rheumatoid arthritis. Rheum Dis Clin North Am 1995; 21: 675–690.

    CAS  PubMed  Google Scholar 

  38. Franz JK, Pap T, Hummel KM, Nawrath M, Aicher WK, Shigeyama Y et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum 2000; 43: 599–607.

    Article  CAS  Google Scholar 

  39. Firestein GS, Echeverri F, Yeo M, Zvaifler NJ, Green DR . Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 1997; 94: 10895–10900.

    Article  CAS  Google Scholar 

  40. Ritchlin C, Dwyer E, Bucala R, Winchester R . Sustained and distinctive patterns of gene activation in synovial fibroblasts and whole synovial tissue obtained from inflammatory synovitis. Scand J Immunol 1994; 40: 292–298.

    Article  CAS  Google Scholar 

  41. Laragione T, Brenner M, Li W, Gulko PS . Cia5d regulates a new fibroblast-like synoviocyte invasion-associated gene expression signature. Arthritis Res Ther 2008; 10: R92.

    Article  Google Scholar 

  42. Pap T, Franz JK, Hummel KM, Jeisy E, Gay R, Gay S . Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res 2000; 2: 59–64.

    Article  CAS  Google Scholar 

  43. Irby RB, Malek RL, Bloom G, Tsai J, Letwin N, Frank BC et al. Iterative microarray and RNA interference-based interrogation of the SRC-induced invasive phenotype. Cancer Res 2005; 65: 1814–1821.

    Article  CAS  Google Scholar 

  44. Benes P, Vetvicka V, Fusek M . Cathepsin D—many functions of one aspartic protease. Crit Rev Oncol Hematol 2008; 68: 12–28.

    Article  Google Scholar 

  45. Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM et al. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 2002; 62: 4478–4483.

    CAS  PubMed  Google Scholar 

  46. Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM et al. CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 2007; 67: 3396–3405.

    Article  CAS  Google Scholar 

  47. Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 2004; 64: 4010–4017.

    Article  CAS  Google Scholar 

  48. Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK et al. Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 2009; 69: 5743–5751.

    Article  CAS  Google Scholar 

  49. Benini S, Perbal B, Zambelli D, Colombo MP, Manara MC, Serra M et al. In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 2005; 24: 4349–4361.

    Article  CAS  Google Scholar 

  50. Gatza CE, Oh SY, Blobe GC . Roles for the type III TGF-beta receptor in human cancer. Cell Signal 2010; 22: 1163–1174.

    Article  CAS  Google Scholar 

  51. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107: 789–800.

    Article  CAS  Google Scholar 

  52. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 1998; 95: 13221–13226.

    Article  CAS  Google Scholar 

  53. van Lent PL, Span PN, Sloetjes AW, Radstake TR, van Lieshout AW, Heuvel JJ et al. Expression and localisation of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis. Ann Rheum Dis 2005; 64: 368–374.

    Article  CAS  Google Scholar 

  54. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM . Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 1992; 52: 701–708.

    CAS  PubMed  Google Scholar 

  55. Imren S, Kohn DB, Shimada H, Blavier L, DeClerck YA . Overexpression of tissue inhibitor of metalloproteinases-2 retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res 1996; 56: 2891–2895.

    CAS  PubMed  Google Scholar 

  56. Meng H, Griffiths M, Remmers E, Kawahito Y, Li W, Neisa R et al. Identification of two novel female-specific non-MHC loci regulating collagen-induced arthritis severity and chronicity, and evidence of epistasis. Arthritis Rheum 2004; 50: 2695–2705.

    Article  CAS  Google Scholar 

  57. Vingsbo C, Sahlstrand P, Brun J, Jonsson R, Saxne T, Holmdahl R . Pristane-induced arthritis in rats: A new model for rheumatoid arthritis with a chronic disease course influenced by both major histocompatibility complex and non-major histocompatibility complex genes. Am J Pathol 1996; 149: 1675–1683.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funded by the National Institutes of Health grants R01-AR46213, R01-AR052439 (NIAMS) and R01-AI54348 (NIAID) to Dr P Gulko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Gulko.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, E., Brenner, M., Laragione, T. et al. Synovial expression of Th17-related and cancer-associated genes is regulated by the arthritis severity locus Cia10. Genes Immun 13, 221–231 (2012). https://doi.org/10.1038/gene.2011.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.73

Keywords

This article is cited by

Search

Quick links