Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2

Abstract

Typhoid fever, which is caused by Salmonella typhi and paratyphi, is a severe systemic disease that remains a major public health issue in several areas of the world. We can model the human disease using mice infected with a related bacterium, Salmonella typhimurium. This model recapitulates several clinical aspects of the human disease and allows for the study of the host response to Salmonella typhimurium infection in vivo. Previous work in our laboratory has identified three Immunity to typhimurium loci (Ity, Ity2 and Ity3) in the wild-derived MOLF/Ei mice, influencing survival after infection with Salmonella typhimurium. The MOLF/Ei alleles at Ity and Ity2 are protective, while the MOLF/Ei allele at Ity3 confers susceptibility. In this paper, we have generated a novel cross combination between the highly susceptible strain, MOLF/Ei, and the resistant strain, 129S6, to better define the genetic architecture of susceptibility to infection in MOLF/Ei. Using this cross, we have replicated the locus on chr 11 (Ity2) and identified a novel locus on chr 13 (Ity13). Using microarrays and transcriptional profiling, we examined the response of uninfected and infected Ity2 congenic mice. These analyses demonstrate a role for both type-1-interferon (IFN) and TRP53 signaling in the pathogenesis of Salmonella infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. CDC. Typhoid Fever. In: Centres for Disease Control and Prevention, 2005.

  2. Roy MF, Malo D . Genetic regulation of host responses to Salmonella infection in mice. Genes Immun 2002; 3: 381–393.

    Article  CAS  PubMed  Google Scholar 

  3. Mastroeni P . Immunity to systemic Salmonella infections. Curr Mol Med 2002; 2: 393–406.

    Article  CAS  PubMed  Google Scholar 

  4. Richer E, Prendergast C, Zhang DE, Qureshi ST, Vidal SM, Malo D . N-ethyl-N-nitrosourea-induced mutation in ubiquitin-specific peptidase 18 causes hyperactivation of IFN-{alpha}{beta} signaling and suppresses STAT4-induced IFN-{gamma} production, resulting in increased susceptibility to Salmonella typhimurium. J Immunol 2010; 185: 3593–3601.

    Article  CAS  PubMed  Google Scholar 

  5. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 1995; 182: 655–666.

    Article  CAS  PubMed  Google Scholar 

  6. Roy MF, Riendeau N, Bedard C, Helie P, Min-Oo G, Turcotte K et al. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J Exp Med 2007; 204: 2949–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qureshi ST, Lariviere L, Sebastiani G, Clermont S, Skamene E, Gros P et al. A high-resolution map in the chromosomal region surrounding the Lps locus. Genomics 1996; 31: 283–294.

    Article  CAS  PubMed  Google Scholar 

  8. Monack DM, Mueller A, Falkow S . Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2004; 2: 747–765.

    Article  CAS  PubMed  Google Scholar 

  9. Sebastiani G, Blais V, Sancho V, Vogel SN, Stevenson MM, Gros P et al. Host immune response to Salmonella enterica serovar Typhimurium infection in mice derived from wild strains. Infect Immun 2002; 70: 1997–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vidal S, Gros P, Skamene E . Natural resistance to infection with intracellular parasites: molecular genetics identifies Nramp1 as the Bcg/Ity/Lsh locus. J Leukoc Biol 1995; 58: 382–390.

    Article  CAS  PubMed  Google Scholar 

  11. Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics 1998; 47: 180–186.

    Article  CAS  PubMed  Google Scholar 

  12. Angers I, Sancho-Shimizu V, Descoteaux A, Gewirtz AT, Malo D . Tlr5 is not primarily associated with susceptibility to Salmonella typhimurium infection in MOLF/Ei mice. Mamm Genome 2006; 17: 385–397.

    Article  CAS  PubMed  Google Scholar 

  13. Sancho-Shimizu V, Khan R, Mostowy S, Lariviere L, Wilkinson R, Riendeau N et al. Molecular genetic analysis of two loci (Ity2 and Ity3) involved in the host response to infection with Salmonella typhimurium using congenic mice and expression profiling. Genetics 2007; 177: 1125–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003; 13: 2129–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goh SH, Josleyn M, Lee YT, Danner RL, Gherman RB, Cam MC et al. The human reticulocyte transcriptome. Physiol Genomics 2007; 30: 172–178.

    Article  CAS  PubMed  Google Scholar 

  16. Arnaud L, Saison C, Helias V, Lucien N, Steschenko D, Giarratana MC et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet 2010; 87: 721–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morle L, Bozon M, Alloisio N, Vallier A, Hayette S, Pascal O et al. Ankyrin Bugey: a de novo deletional frameshift variant in exon 6 of the ankyrin gene associated with spherocytosis. Am J Hematol 1997; 54: 242–248.

    Article  CAS  PubMed  Google Scholar 

  18. Peters LL, Andrews NC, Eicher EM, Davidson MB, Orkin SH, Lux SE . Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature 1993; 362: 768–770.

    Article  CAS  PubMed  Google Scholar 

  19. Salomao M, Chen K, Villalobos J, Mohandas N, An X, Chasis JA . Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 2010; 116: 267–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu BM, McLaughlin SK, Na R, Liu J, Cui Y, Martin C et al. Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. Blood 2008; 112: 2071–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ned RM, Swat W, Andrews NC . Transferrin receptor 1 is differentially required in lymphocyte development. Blood 2003; 102: 3711–3718.

    Article  CAS  PubMed  Google Scholar 

  22. Borrego A, Peters LC, Jensen JR, Ribeiro OG, Koury Cabrera WH, Starobinas N et al. Genetic determinants of acute inflammation regulate Salmonella infection and modulate Slc11a1 gene (formerly Nramp1) effects in selected mouse lines. Microbes Infect 2006; 8: 2766–2771.

    Article  CAS  PubMed  Google Scholar 

  23. Jenner RG, Young RA . Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3: 281–294.

    Article  CAS  PubMed  Google Scholar 

  24. Hess J, Ladel C, Miko D, Kaufmann SH . Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 1996; 156: 3321–3326.

    CAS  PubMed  Google Scholar 

  25. Vazquez-Torres A, Fantuzzi G, Edwards 3rd CK, Dinarello CA, Fang FC . Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci USA 2001; 98: 2561–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raupach B, Peuschel SK, Monack DM, Zychlinsky A . Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 2006; 74: 4922–4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernandez-Perez L, Chapgier A et al. Partial recessive IFN-{gamma}R1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 2011; 20: 1509–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thompson LJ, Dunstan SJ, Dolecek C, Perkins T, House D, Dougan G et al. Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc Natl Acad Sci USA 2009; 106: 22433–22438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roy MF, Riendeau N, Loredo-Osti JC, Malo D . Complexity in the host response to Salmonella typhimurium infection in AcB and BcA recombinant congenic strains. Genes Immun 2006; 7: 655–666.

    Article  CAS  PubMed  Google Scholar 

  30. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris SL, Levine AJ . The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  32. Schlereth K, Charles JP, Bretz AC, Stiewe T . Life or death: p53-induced apoptosis requires DNA binding cooperativity. Cell Cycle 2010; 9: 4068–4076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H et al. Integration of interferon-alpha/beta signaling to p53 responses in tumor suppression and antiviral defense. Nature 2003; 424: 516–523.

    Article  CAS  PubMed  Google Scholar 

  34. Porta C, Hadj-Slimane R, Nejmeddine M, Pampin M, Tovey MG, Espert L et al. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 2005; 24: 605–615.

    Article  CAS  PubMed  Google Scholar 

  35. Imbeault M, Ouellet M, Tremblay MJ . Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Munoz-Fontela C, Macip S, Martinez-Sobrido L, Brown L, Ashour J, Garcia-Sastre A et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med 2008; 205: 1929–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong Y, Eigler T . Transcriptional targets for pituitary tumor-transforming gene-1. J Mol Endocrinol 2009; 43: 179–185.

    Article  CAS  PubMed  Google Scholar 

  38. Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS et al. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 2002; 9: 761–771.

    Article  CAS  PubMed  Google Scholar 

  39. Bernal JA, Luna R, Espina A, Lazaro I, Ramos-Morales F, Romero F et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 2002; 32: 306–311.

    Article  CAS  PubMed  Google Scholar 

  40. Sharma N, Timmers C, Trikha P, Saavedra HI, Obery A, Leone G . Control of the p53-p21CIP1 Axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J Biol Chem 2006; 281: 36124–36131.

    Article  CAS  PubMed  Google Scholar 

  41. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko SV, Renauld JC . Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. J Biol Chem 2004; 279: 32269–32274.

    Article  CAS  PubMed  Google Scholar 

  42. Fehri LF, Rechner C, Janssen S, Mak TN, Holland C, Bartfeld S et al. Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation. Epigenetics 2009; 4: 577–586.

    Article  CAS  PubMed  Google Scholar 

  43. Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A et al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 2011; 331: 1319–1321.

    Article  CAS  PubMed  Google Scholar 

  44. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT . The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011; 39 (suppl 1): D842–D848.

    Article  CAS  PubMed  Google Scholar 

  45. Sakai T, Miura I, Yamada-Ishibashi S, Wakita Y, Kohara Y, Yamazaki Y et al. Update of mouse microsatellite database of Japan (MMDBJ). Exp Anim 2004; 53: 151–154.

    Article  CAS  PubMed  Google Scholar 

  46. Team RDC. A Language and Environment for Statistical Computing. In: R Foundation for Statistical Computing: Vienna, Austria, 2011.

  47. Michal Blazejczyk MM, Nadon R . (FlexArray: A Statistical Data Analysis Software for Gene Expression Microarrays). Genome Quebec: Montreal, Canada, 2007.

    Google Scholar 

  48. Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P . Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 2001; 276: 19937–19944.

    Article  CAS  PubMed  Google Scholar 

  49. Miron M, Nadon R . Inferential literacy for experimental high-throughput biology. Trends Genet 2006; 22: 84–89.

    Article  CAS  PubMed  Google Scholar 

  50. Alonso SR, Tracey L, Ortiz P, Perez-Gomez B, Palacios J, Pollan M et al. A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 2007; 67: 3450–3460.

    Article  CAS  PubMed  Google Scholar 

  51. IPA. Data were analyzed through the use of Ingenuity Pathways Analysis (Ingenuity® Systems http://www.ingenuity.com).

  52. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA et al. TM4 microarray software suite. Methods Enzymol 2006; 411: 134–193.

    Article  CAS  PubMed  Google Scholar 

  53. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the technical assistance of Nadia Prud’homme, Line Larivière and Melissa Herman and the contribution of the McGill University and Génome Québec Functional Genomics platform personnel and the Innovation Centre. We thank Dr Shauna Dauphinee for critical reading of this manuscript. This work was supported by the Canadian Institutes of Health Research (to DM). RK is a recipient of a Fonds de la Recherche en Santé du Québec Studentship. DM is a McGill Dawson Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Malo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, R., Sancho-Shimizu, V., Prendergast, C. et al. Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun 13, 175–183 (2012). https://doi.org/10.1038/gene.2011.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.69

Keywords

This article is cited by

Search

Quick links