Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Both copy number and sequence variations affect expression of human DEFB4

Abstract

Copy number variations (CNVs) were found to contribute massively to the variability of genomes. One of the best studied CNV region is the β-defensin cluster (DEFB) on 8p23.1. Individual DEFFB copy numbers (CNs) between 2 and 12 were found, whereas low CNs predispose for Crohn's disease. A further level of complexity is represented by sequence variations between copies (multisite variations, MSVs). To address the relation of DEFB CN and MSV to the expression of β-defensin genes, we analyzed DEFB4 expression in B-lymphoblastoid cell lines (LCLs) and primary keratinocytes (normal human epidermal keratinocyte, NHEK) before and after stimulation with lipopolysaccharide, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Moreover, we quantified one DEFB4 MSV in DNA and mRNA as a marker for variant-specific expression (VSE) and resequenced a region of 2 kb upstream of DEFB4 in LCLs. We found a strong correlation of DEFB CN and DEFB4 expression in 16 LCLs, although several LCLs with very different CNs exhibit similar expression levels. Quantification of the MSV revealed VSE with consistently lower expression of one variant. Costimulation of NHEKs with TNF-α/IFN-γ leads to a synergistic increase in total DEFB4 expression and suppresses VSE. Analysis of the DEFB4 promoter region showed remarkably high density of sequence variabilities (1 MSV/41 bp).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chang TL, Vargas Jr, DelPortillo A, Klotman ME . Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 2005; 115: 765–773.

    Article  CAS  Google Scholar 

  2. Daher KA, Selsted ME, Lehrer RI . Direct inactivation of viruses by human granulocyte defensins. J Virol 1986; 60: 1068–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ericksen B, Wu Z, Lu W, Lehrer RI . Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 2005; 49: 269–275.

    Article  CAS  Google Scholar 

  4. Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.

    Article  CAS  Google Scholar 

  5. Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K et al. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001; 15: 1819–1821.

    Article  CAS  Google Scholar 

  6. Lehrer RI, Ganz T, Szklarek D, Selsted ME . Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 1988; 81: 1829–1835.

    Article  CAS  Google Scholar 

  7. Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. Aids 2003; 17: F39–F48.

    Article  CAS  Google Scholar 

  8. Selsted ME, Szklarek D, Lehrer RI . Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immunol 1984; 45: 150–154.

    CAS  Google Scholar 

  9. Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA et al. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 2002; 298: 995–1000.

    Article  CAS  Google Scholar 

  10. Aldred PM, Hollox EJ, Armour JA . Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet 2005; 14: 2045–2052.

    Article  CAS  Google Scholar 

  11. Groth M, Szafranski K, Taudien S, Huse K, Mueller O, Rosenstiel P et al. High-resolution mapping of the 8p23.1 beta-defensin cluster reveals strictly concordant copy number variation of all genes. Hum Mutat 2008; 29: 1247–1254.

    Article  CAS  Google Scholar 

  12. Hollox EJ, Armour JA, Barber JC . Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 2003; 73: 591–600.

    Article  CAS  Google Scholar 

  13. Linzmeier RM, Ganz T . Human defensin gene copy number polymorphisms: comprehensive analysis of independent variation in alpha- and beta-defensin regions at 8p22-p23. Genomics 2005; 86: 423–430.

    Article  CAS  Google Scholar 

  14. Mars WM, Patmasiriwat P, Maity T, Huff V, Weil MM, Saunders GF . Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and HP-3. J Biol Chem 1995; 270: 30371–30376.

    Article  CAS  Google Scholar 

  15. Armour JA, Palla R, Zeeuwen PL, den Heijer M, Schalkwijk J, Hollox EJ . Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats. Nucleic Acids Res 2007; 35: e19.

    Article  Google Scholar 

  16. Taudien S, Galgoczy P, Huse K, Reichwald K, Schilhabel M, Szafranski K et al. Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence. BMC Genomics 2004; 5: 92.

    Article  Google Scholar 

  17. Feuk L, Carson AR, Scherer SW . Structural variation in the human genome. Nat Rev Genet 2006; 7: 85–97.

    Article  CAS  Google Scholar 

  18. Henrichsen CN, Chaignat E, Reymond A . Copy number variants, diseases and gene expression. Hum Mol Genet 2009; 18: R1–R8.

    Article  CAS  Google Scholar 

  19. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315: 848–853.

    Article  CAS  Google Scholar 

  20. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D et al. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 2008; 40: 23–25.

    Article  CAS  Google Scholar 

  21. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79: 439–448.

    Article  CAS  Google Scholar 

  22. Bentley RW, Pearson J, Gearry RB, Barclay ML, McKinney C, Merriman TR et al. Association of higher DEFB4 genomic copy number with Crohn's disease. Am J Gastroenterol 2009; 105: 354–359.

    Article  Google Scholar 

  23. Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 2007; 81: 475–491.

    Article  CAS  Google Scholar 

  24. Breunis WB, van Mirre E, Geissler J, Laddach N, Wolbink G, van der Schoot E et al. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat 2009; 30: E640–E650.

    Article  Google Scholar 

  25. Koene HR, de Haas M, Kleijer M, Roos D, von dem Borne AE . NA-phenotype-dependent differences in neutrophil Fc gamma RIIIb expression cause differences in plasma levels of soluble Fc gamma RIII. Br J Haematol 1996; 93: 235–241.

    Article  CAS  Google Scholar 

  26. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med 2008; 205: 1573–1582.

    Article  CAS  Google Scholar 

  27. Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851–855.

    Article  CAS  Google Scholar 

  28. Jansen PA, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ et al. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS One 2009; 4: e4725.

    Article  Google Scholar 

  29. Aldhous MC, Noble CL, Satsangi J . Dysregulation of human beta-defensin-2 protein in inflammatory bowel disease. PLoS One 2009; 4: e6285.

    Article  Google Scholar 

  30. Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, Brookes AJ . Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 2004; 36: 861–866.

    Article  CAS  Google Scholar 

  31. Huse K, Taudien S, Groth M, Rosenstiel P, Szafranski K, Hiller M et al. Genetic variants of the copy number polymorphic beta-defensin locus are associated with sporadic prostate cancer. Tumour Biol 2008; 29: 83–92.

    Article  CAS  Google Scholar 

  32. Tsutsumi-Ishii Y, Nagaoka I . NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukoc Biol 2002; 71: 154–162.

    CAS  PubMed  Google Scholar 

  33. Harder J, Bartels J, Christophers E, Schroder JM . A peptide antibiotic from human skin. Nature 1997; 387: 861.

    Article  CAS  Google Scholar 

  34. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003; 171: 3262–3269.

    Article  CAS  Google Scholar 

  35. Kaiser V, Diamond G . Expression of mammalian defensin genes. J Leukoc Biol 2000; 68: 779–784.

    CAS  PubMed  Google Scholar 

  36. Kota S, Sabbah A, Chang TH, Harnack R, Xiang Y, Meng X et al. Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J Biol Chem 2008; 283: 22417–22429.

    Article  CAS  Google Scholar 

  37. Wain LV, Armour JA, Tobin MD . Genomic copy number variation, human health, and disease. Lancet 2009; 374: 340–350.

    Article  CAS  Google Scholar 

  38. Hollox EJ . Copy number variation of beta-defensins and relevance to disease. Cytogenet Genome Res 2008; 123: 148–155.

    Article  CAS  Google Scholar 

  39. Groth M, Huse K, Reichwald K, Taudien S, Hampe J, Rosenstiel P et al. Method for preparing single-stranded DNA templates for pyrosequencing using vector ligation and universal biotinylated primers. Anal Biochem 2006; 356: 194–201.

    Article  CAS  Google Scholar 

  40. Zheng D . Asymmetric histone modifications between the original and derived loci of human segmental duplications. Genome Biol 2008; 9: R105.

    Article  Google Scholar 

  41. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R et al. Latent membrane protein 1 of epstein-barr virus mimics a constitutively active receptor molecule. EMBO J 1997; 16: 6131–6140.

    Article  CAS  Google Scholar 

  42. Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH et al. Allelic variation in gene expression is common in the human genome. Genome Res 2003; 13: 1855–1862.

    Article  CAS  Google Scholar 

  43. Palacios R, Gazave E, Goni J, Piedrafita G, Fernando O, Navarro A et al. Allele-specific gene expression is widespread across the genome and biological processes. PLoS One 2009; 4: e4150.

    Article  Google Scholar 

  44. Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E et al. Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet 2008; 4: e1000006.

    Article  Google Scholar 

  45. Yan H, Dobbie Z, Gruber SB, Markowitz S, Romans K, Giardiello FM et al. Small changes in expression affect predisposition to tumorigenesis. Nat Genet 2002; 30: 25–26.

    Article  CAS  Google Scholar 

  46. Eskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RG, Huizinga TW . Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 1998; 95: 9465–9470.

    Article  CAS  Google Scholar 

  47. Tao H, Cox DR, Frazer KA . Allele-specific KRT1 expression is a complex trait. PLoS Genet 2006; 2: e93.

    Article  Google Scholar 

  48. von Korff M, Radovic S, Choumane W, Stamati K, Udupa SM, Grando S et al. Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J 2009; 59: 14–26.

    Article  CAS  Google Scholar 

  49. Joly S, Organ CC, Johnson GK, McCray Jr PB, Guthmiller JM . Correlation between beta-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol 2005; 42: 1073–1084.

    Article  CAS  Google Scholar 

  50. Schantz J-T, Ng KW . A Manual for Primary Human Cell Culture. World Scientific Publishing Co. Pte. Ltd.: Singapore, 2004.

    Book  Google Scholar 

  51. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

  52. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.

    Article  CAS  Google Scholar 

  53. Bonfield JK, Smith K, Staden R . A new DNA sequence assembly program. Nucleic Acids Res 1995; 23: 4992–4999.

    Article  CAS  Google Scholar 

  54. Baxevanis AD . Current Protocols in Bioinformatics. John Wiley & Sons Inc: Hoboken, 2002.

    Google Scholar 

  55. Rice P, Longden I, Bleasby A . EMBOSS: the european molecular biology open software suite. Trends Genet 2000; 16: 276–277.

    Article  CAS  Google Scholar 

  56. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

Download references

Acknowledgements

The skilful and diligent technical assistance of Beate Szafranski and Ivonne Goerlich is gratefully acknowledged. This work was supported by grants from the Wilhelm Sander Stiftung (2005.045.1) and National Bundesministerium für Bildung und Forschung (01GS0809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Groth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groth, M., Wiegand, C., Szafranski, K. et al. Both copy number and sequence variations affect expression of human DEFB4. Genes Immun 11, 458–466 (2010). https://doi.org/10.1038/gene.2010.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.19

Keywords

This article is cited by

Search

Quick links