Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis

Abstract

Understanding the pathogenesis of type-I diabetes (T1D) is hindered in humans by the long autoimmune process occurring before clinical onset and by the difficulty to study the pancreas directly. Alternatively, exploring body fluids and particularly peripheral blood can provide some insights. Indeed, circulating cells can function as ‘sentinels’, with subtle changes in gene expression occurring in association with disease. Therefore, we investigated the gene expression profiles of circulating blood cells using Affymetrix microarrays. Whole-blood samples from 20 first-degree relatives of T1D children with autoimmune diabetes-related antibodies, 19 children immediately after the onset of clinical T1D and 20 age- and sex-matched healthy controls were collected in PAXgene tubes. A global gene expression analysis with MDS approach allowed the discrimination of pre-diabetic subjects, diabetic patients and healthy controls. Univariate statistical analysis highlighted 107 distinct genes differently expressed between these three groups. Two major gene expression profiles were characterized, including type-I IFN-regulated genes and genes associated with biosynthesis and oxidative phosphorylation. Our results showed the presence of early functional modifications associated with T1D, which could help to understand the disease and suggest possible avenues for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bach JF . Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 1994; 15: 516–542.

    Article  CAS  Google Scholar 

  2. Bach JF . Insulin-dependent diabetes mellitus as a beta-cell targeted disease of immunoregulation. J Autoimmun 1995; 8: 439–463.

    Article  CAS  Google Scholar 

  3. Atkinson MA, Leiter EH . The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5: 601–604.

    Article  CAS  Google Scholar 

  4. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC . Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221–2228.

    Article  CAS  Google Scholar 

  5. Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJ, Bingley PJ et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 2004; 53: 384–392.

    Article  CAS  Google Scholar 

  6. Bingley PJ, Gale EA . Progression to type 1 diabetes in islet cell antibody-positive relatives in the European nicotinamide diabetes intervention trial: the role of additional immune, genetic and metabolic markers of risk. Diabetologia 2006; 49: 881–890.

    Article  CAS  Google Scholar 

  7. Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ . Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 2008; 180: 1929–1937.

    Article  CAS  Google Scholar 

  8. Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC . Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 2007; 92: 3705–3711.

    Article  CAS  Google Scholar 

  9. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA . The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 2006; 147: 126–132.

    Article  CAS  Google Scholar 

  10. Maas K, Chan S, Parker J, Slater A, Moore J, Olsen N et al. Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002; 169: 5–9.

    Article  CAS  Google Scholar 

  11. Batliwalla FM, Li W, Ritchlin CT, Xiao X, Brenner M, Laragione T et al. Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol Med 2005; 11: 21–29.

    Article  CAS  Google Scholar 

  12. Li D, Butt A, Clarke S, Swaminathana R . Real-time quantitative PCR measurement of thyroglobulin mRNA in peripheral blood of thyroid cancer patients and healthy subjects. Ann N Y Acad Sci 2004; 1022: 147–151.

    Article  CAS  Google Scholar 

  13. Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G . Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett 2006; 106: 63–71.

    Article  CAS  Google Scholar 

  14. Thach DC, Lin B, Walter E, Kruzelock R, Rowley RK, Tibbetts C et al. Assessment of two methods for handling blood in collection tubes with RNA stabilizing agent for surveillance of gene expression profiles with high density microarrays. J Immunol Methods 2003; 283: 269–279.

    Article  CAS  Google Scholar 

  15. Rainen L, Oelmueller U, Jurgensen S, Wyrich R, Ballas C, Schram J et al. Stabilization of mRNA expression in whole blood samples. Clin Chem 2002; 48: 1883–1890.

    CAS  PubMed  Google Scholar 

  16. Hartel C, Bein G, Muller-Steinhardt M, Kluter H . Ex vivo induction of cytokine mRNA expression in human blood samples. J Immunol Methods 2001; 249: 63–71.

    Article  CAS  Google Scholar 

  17. Baccala R, Kono DH, Theofilopoulos AN . Interferons as pathogenic effectors in autoimmunity. Immunol Rev 2005; 204: 9–26.

    Article  CAS  Google Scholar 

  18. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003; 100: 2610–2615.

    Article  CAS  Google Scholar 

  19. Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK . Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005; 52: 1491–1503.

    Article  CAS  Google Scholar 

  20. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol Med 2007; 13: 59–68.

    Article  CAS  Google Scholar 

  21. Tan FK, Zhou X, Mayes MD, Gourh P, Guo X, Marcum C et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 2006; 45: 694–702.

    Article  CAS  Google Scholar 

  22. van Baarsen LG, van der Pouw Kraan TC, Kragt JJ, Baggen JM, Rustenburg F, Hooper T et al. A subtype of multiple sclerosis defined by an activated immune defense program. Genes Immun 2006; 7: 522–531.

    Article  CAS  Google Scholar 

  23. van der Pouw Kraan TC, Wijbrandts CA, van Baarsen LG, Voskuyl AE, Rustenburg F, Baggen JM et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann Rheum Dis 2007; 66: 1008–1014.

    Article  CAS  Google Scholar 

  24. Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO . Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci USA 2008; 105: 12439–12444.

    Article  CAS  Google Scholar 

  25. Huang X, Yuang J, Goddard A, Foulis A, James RF, Lernmark A et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes 1995; 44: 658–664.

    Article  CAS  Google Scholar 

  26. Foulis AK, Farquharson MA, Meager A . Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 1987; 2: 1423–1427.

    Article  CAS  Google Scholar 

  27. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J . Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001; 294: 1540–1543.

    Article  CAS  Google Scholar 

  28. Wallace J, Petri M, Olsen N, Kirou K, Dennis G, Yao Y et al. Abstract 1315: MEDI-545, an anti-interferon alpha monoclonal antibody, shows evidence of clinical activity in systemic lupus erythematosus (ACR 71st annual scientific meeting). Arthritis Rheum 2007; 56 (9 suppl): S526.

    Google Scholar 

  29. Lang KS, Weigert C, Braedel S, Fillon S, Palmada M, Schleicher E et al. Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes. Am J Physiol Cell Physiol 2003; 284: 200–208.

    Article  Google Scholar 

  30. Yeshao W, Gu J, Peng X, Nairn AC, Nadler JL . Elevated glucose activates protein synthesis in cultured cardiac myocytes. Metabolism 2005; 54: 1453–1460.

    Article  CAS  Google Scholar 

  31. Yin Z, Wilson S, Hauser NC, Tournu H, Hoheisel JD, Brown AJ . Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 2003; 48: 713–724.

    Article  CAS  Google Scholar 

  32. Nair KS, Halliday D, Garrow JS . Increased energy expenditure in poorly controlled type 1 (insulin-dependent) diabetic patients. Diabetologia 1984; 27: 13–16.

    Article  CAS  Google Scholar 

  33. Charlton MR, Nair KS . Role of hyperglucagonemia in catabolism associated with type 1 diabetes: effects on leucine metabolism and the resting metabolic rate. Diabetes 1998; 47: 1748–1756.

    Article  CAS  Google Scholar 

  34. Peakman M, Tree TI, Endl J, van Endert P, Atkinson MA, Roep BO . Characterization of preparations of GAD65, proinsulin, and the islet tyrosine phosphatase IA-2 for use in detection of autoreactive T-cells in type 1 diabetes: report of phase II of the second international immunology of diabetes society workshop for standardization of T-cell assays in type 1 diabetes. Diabetes 2001; 50: 1749–1754.

    Article  CAS  Google Scholar 

  35. van Halteren AG, Kardol MJ, Mulder A, Roep BO . Homing of human autoreactive T cells into pancreatic tissue of NOD–scid mice. Diabetologia 2005; 48: 75–82.

    Article  CAS  Google Scholar 

  36. Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004; 75: 1094–1105.

    Article  CAS  Google Scholar 

  37. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743–747.

    Article  CAS  Google Scholar 

  38. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006; 7: 3.

    Article  Google Scholar 

  39. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  40. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  Google Scholar 

  41. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  42. Lee ML, Whitmore GA . Power and sample size for DNA microarray studies. Stat Med 2002; 21: 3543–3570.

    Article  Google Scholar 

  43. Valentini G . Clusterv: a tool for assessing the reliability of clusters discovered in DNA microarray data. Bioinformatics 2006; 22: 369–370.

    Article  CAS  Google Scholar 

  44. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  45. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.

    Article  Google Scholar 

  46. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35 (Web Server issue): W169–W175.

    Article  Google Scholar 

  47. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  Google Scholar 

  48. Pachot A, Blond JL, Mougin B, Miossec P . Peptidylpropyl isomerase B (PPIB): a suitable reference gene for mRNA quantification in peripheral whole blood. J Biotechnol 2004; 114: 121–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors H Dodat, R Kohler and P Mouriquand, and Dr CL Gay (Hospices Civils de Lyon), Dr P Pelissier (CHU de St Etienne) and Dr C Bony (CH d’Annonay) for their contribution to the study. This work was supported by bioMérieux and grants from the ‘Association Nationale de la Recherche Technique’ (ANRT) and the ‘Association Française des diabétiques’ (AFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Reynier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynier, F., Pachot, A., Paye, M. et al. Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 11, 269–278 (2010). https://doi.org/10.1038/gene.2009.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2009.112

Keywords

This article is cited by

Search

Quick links