Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for −819C/T in leprosy susceptibility

Abstract

Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-α (LTA) and vitamin-D receptor (VDR). Here, we combined a case–control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the −819T allele is associated with leprosy susceptibility either in the case–control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the −819T allele in leprosy susceptibility (odds ratio (OR)=1.40; P=0.01). Finally, we tested IL-10 production in peripheral blood mononuclear cells stimulated with Mycobacterium leprae antigens and found that −819T carriers produced lower levels of IL-10 when compared with non-carriers. Taken together, these data suggest that low levels of IL-10 during the disease outcome can drive patients to a chronic and unprotective response that culminates with leprosy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Richardus JH, Habbema JD . The impact of leprosy control on the transmission of M. leprae: is elimination being attained? Lepr Rev 2007; 78: 330–337.

    PubMed  Google Scholar 

  2. Bayley JP, Ottenhoff TH, Verweij CL . Is there a future for TNF promoter polymorphisms? Genes Immun 2004; 5: 315–329.

    Article  CAS  Google Scholar 

  3. Moraes MO, Cardoso CC, Vanderborght PR, Pacheco AG . Genetics of host response in leprosy. Lepr Rev 2006; 77: 189–202.

    PubMed  Google Scholar 

  4. Alter A, Alcaïs A, Abel L, Schurr E . Leprosy as a genetic model for susceptibility to common infectious diseases. Hum Genet 2008; 123: 227–235.

    Article  Google Scholar 

  5. Monot M, Honore N, Garnier T, Araoz R, Coppee JY, Lacroix C et al. On the origin of leprosy. Science 2005; 308: 1040–1042.

    Article  CAS  Google Scholar 

  6. Alcaïs A, Alter A, Antoni G, Orlova M, Nguyen VT, Singh M et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 2007; 39: 517–522.

    Article  Google Scholar 

  7. Vanderborght PR, Pacheco AG, Moraes ME, Antoni G, Romero M, Verville A et al. HLA-DRB1*04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients. Genes Immun 2007; 8: 320–324.

    Article  CAS  Google Scholar 

  8. Moraes MO, McNicholl JM, Huizinga TWJ, Ottenhoff THM . Cytokine genes I: IL10, IL6, IL4, and the IL1 family. In: Kaslow RA, McNicholl, JM, Hill AVS (eds). Genetic Susceptibility to Infectious Diseases. Oxford University Press: NY, 2008, pp 208–226.

    Google Scholar 

  9. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP . Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003; 421: 388–392.

    Article  CAS  Google Scholar 

  10. Volk H, Asadullah K, Gallagher G, Sabat R, Grutz G . IL-10 and its homologs: important immune mediators and emerging immunotherapeutic targets. Trends Immunol 2001; 22: 414–417.

    Article  CAS  Google Scholar 

  11. Kõks S, Kingo K, Vabrit K, Rätsep R, Karelson M, Silm H et al. Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis. Genes Immun 2005; 6: 407–415.

    Article  Google Scholar 

  12. Chung EY, Liu J, Zhang Y, Ma X . Differential expression in lupus-associated IL-10 promoter single-nucleotide polymorphisms is mediated by poly(ADP-ribose) polymerase-1. Genes Immun 2007; 8: 577–589.

    Article  CAS  Google Scholar 

  13. Santos AR, Suffys PN, Vanderborght PR, Moraes MO, Vieira LMM, Cabello PH et al. Role of tumor necrosis factor-α and interleukin-10 promoter gene polymorphisms in leprosy. J Infect Dis 2002; 186: 1687–1691.

    Article  CAS  Google Scholar 

  14. Moraes MO, Pacheco AG, Schonkeren JJ, Vanderborght PR, Nery JA, Santos AR et al. Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy. Genes Immun 2004; 5: 592–595.

    Article  CAS  Google Scholar 

  15. Malhotra D, Darvishi K, Sood S, Sharma S, Grover C, Relhan V et al. IL-10 promoter single nucleotide polymorphisms are significantly associated with resistance to leprosy. Hum Genet 2005; 118: 295–300.

    Article  CAS  Google Scholar 

  16. Fitness J, Floyd S, Warndorff DK, Sichali L, Waungulu LM, Crampin AC et al. Large-scale candidate gene study of leprosy susceptibility in the Karonga district of Northern Malawi. Am J Trop Med Hyg 2004; 71: 330–340.

    Article  CAS  Google Scholar 

  17. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA . Selecting a maximally informative set of single-nucleotide polymorphisms for association analysis using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–120.

    Article  CAS  Google Scholar 

  18. Kavvoura FK, Ioannidis JP . Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls. Hum Genet 2008; 123: 1–14.

    Article  Google Scholar 

  19. Mörmann M, Rieth H, Hua TD, Assohou C, Roupelieva M, Hu SL et al. Mosaics of gene variations in the interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. Genes Immun 2004; 5: 246–255.

    Article  Google Scholar 

  20. Moubasher AD, Kamel NA, Zedan H, Raheem DD . Cytokines in leprosy, I. Serum cytokine profile in leprosy. Int J Dermatol 1998; 37: 733–740.

    Article  CAS  Google Scholar 

  21. Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 2000; 105: 1317–1325.

    Article  CAS  Google Scholar 

  22. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997; 349: 170–173.

    Article  CAS  Google Scholar 

  23. Reuss E, Fimmers R, Kruger A, Becker C, Rittner C, Höhler T . Differential regulation of interleukin-10 production by genetic and environmental factors—a twin study. Genes Immun 2002; 3: 407–413.

    Article  CAS  Google Scholar 

  24. Moraes MO, Santos AR, Schonkeren JJ, Vanderborght PR, Ottenhoff TH, Moraes ME et al. Interleukin-10 promoter haplotypes are differently distributed in the Brazilian versus the Dutch population. Immunogenetics 2003; 54: 896–899.

    CAS  PubMed  Google Scholar 

  25. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M et al. Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 1995; 7: 1–7.

    Article  CAS  Google Scholar 

  26. Salhi A, Rodrigues Jr V, Santoro F, Dessein H, Romano A, Castellano LR et al. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J Immunol 2008; 180: 6139–6148.

    Article  CAS  Google Scholar 

  27. Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 2001; 194: 1497–1506.

    Article  CAS  Google Scholar 

  28. Pacheco AG, Cardoso CC, Moraes MO . IFNG +874T/A, IL10 −1082G/A and TNF −308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet 2008; 123: 477–484.

    Article  CAS  Google Scholar 

  29. Ridley DS, Jopling WH . Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 1966; 34: 255–273.

    CAS  PubMed  Google Scholar 

  30. Gonçalves VF, Carvalho CM, Bortolini MC, Bydlowski SP, Pena SD . The phylogeography of African Brazilians. Hum Hered 2008; 65: 23–32.

    Article  Google Scholar 

  31. Pimenta JR, Zuccherato LW, Debes AA, Maselli L, Soares RP, Moura-Neto RS et al. Color and genomic ancestry in Brazilians: a study with forensic microsatellites. Hum Hered 2006; 62: 190–195.

    Article  Google Scholar 

  32. Devlin B, Risch N . A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995; 29: 311–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M O Moraes.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., Brito-de-Souza, V., Cardoso, C. et al. Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for −819C/T in leprosy susceptibility. Genes Immun 10, 174–180 (2009). https://doi.org/10.1038/gene.2008.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.97

Keywords

This article is cited by

Search

Quick links