Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide SNP-based linkage analysis of tuberculosis in Thais

Abstract

Tuberculosis, a potentially fatal infectious disease, affects millions of individuals annually worldwide. Human protective immunity that contains tuberculosis after infection has not been clearly defined. To gain insight into host genetic factors, nonparametric linkage analysis was performed using high-throughput microarray-based single nucleotide polymorphism (SNP) genotyping platform, a GeneChip array comprised 59 860 bi-allelic markers, in 93 Thai families with multiple siblings, 195 individuals affected with tuberculosis. Genotyping revealed a region on chromosome 5q showing suggestive evidence of linkage with tuberculosis (Z(lr) statistics=3.01, logarithm of odds (LOD) score=2.29, empirical P-value=0.0005), and two candidate regions on chromosomes 17p and 20p by an ordered subset analysis using minimum age at onset of tuberculosis as the covariate (maximum LOD score=2.57 and 3.33, permutation P-value=0.0187 and 0.0183, respectively). These results imply a new evidence of genetic risk factors for tuberculosis in the Asian population. The significance of these ordered subset results supports a clinicopathological concept that immunological impairment in the disease differs between young and old tuberculosis patients. The linkage information from a specific ethnicity may provide unique candidate regions for the identification of the susceptibility genes and further help elucidate the immunopathogenesis of tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Raviglione MC, Smith IM . XDR tuberculosis—implications for global public health. N Engl J Med 2007; 356: 656–659.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Global tuberculosis control: surveillance, planning, financing: WHO report 2007. In: World Health Organization. Geneva, Switzerland, 2007, p 26.

  3. Sutherland I, Svandova E, Radhakrishna S . The development of clinical tuberculosis following infection with tubercle bacilli. 1. A theoretical model for the development of clinical tuberculosis following infection, linking from data on the risk of tuberculous infection and the incidence of clinical tuberculosis in the Netherlands. Tubercle 1982; 63: 255–268.

    Article  CAS  PubMed  Google Scholar 

  4. Koch R . Die Aetiologie der Tuberculose [The aetiology of Tuberculosis]. Berliner Klinische Wochenschrift 1882; 19: 221–230.

    Google Scholar 

  5. Comstock GW . Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978; 117: 621–624.

    CAS  PubMed  Google Scholar 

  6. Casanova JL, Abel L . Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002; 20: 581–620.

    Article  CAS  PubMed  Google Scholar 

  7. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG . Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 2003; 361: 1871–1872.

    Article  CAS  PubMed  Google Scholar 

  8. Kusuhara K, Yamamoto K, Okada K, Mizuno Y, Hara T . Association of IL12RB1 polymorphisms with susceptibility to and severity of tuberculosis in Japanese: a gene-based association analysis of 21 candidate genes. Int J Immunogenet 2007; 34: 35–44.

    Article  CAS  PubMed  Google Scholar 

  9. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347–361.

    Article  CAS  PubMed  Google Scholar 

  10. Cervino AC, Lakiss S, Sow O, Bellamy R, Beyers N, Hoal-van Helden E et al. Fine mapping of a putative tuberculosis-susceptibility locus on chromosome 15q11–13 in African families. Hum Mol Genet 2002; 11: 1599–1603.

    Article  CAS  PubMed  Google Scholar 

  11. Mira MT, Alcais A, Nguyen VT, Moraes MO, Di Flumeri C, Vu HT et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 2004; 427: 636–640.

    Article  CAS  PubMed  Google Scholar 

  12. Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J . SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 2006; 10: 3–12.

    CAS  PubMed  Google Scholar 

  13. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P et al. Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 2000; 97: 8005–8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM et al. Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 2004; 5: 46–57.

    Article  CAS  PubMed  Google Scholar 

  15. Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS et al. Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 2004; 5: 63–67.

    Article  CAS  PubMed  Google Scholar 

  16. Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F et al. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 2006; 203: 1679–1684.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gagneux S, Small PM . Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 2007; 7: 328–337.

    Article  PubMed  Google Scholar 

  18. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006; 103: 2869–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marquet S, Abel L, Hillaire D, Dessein H, Kalil J, Feingold J et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nat Genet 1996; 14: 181–184.

    Article  CAS  PubMed  Google Scholar 

  20. Rihet P, Traore Y, Abel L, Aucan C, Traore-Leroux T, Fumoux F . Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31–q33. Am J Hum Genet 1998; 63: 498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  PubMed  Google Scholar 

  22. Negoro K, McGovern DP, Kinouchi Y, Takahashi S, Lench NJ, Shimosegawa T et al. Analysis of the IBD5 locus and potential gene–gene interactions in Crohn's disease. Gut 2003; 52: 541–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blackwell JM . Genetics of host resistance and susceptibility to intramacrophage pathogens: a study of multicase families of tuberculosis, leprosy and leishmaniasis in North-Eastern Brazil. Int J Parasitol 1998; 28: 21–28.

    Article  CAS  PubMed  Google Scholar 

  24. Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, Caballero-Olin G, Arce-Mendoza AY . CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J Infect Dis 2007; 196: 1698–1706.

    Article  CAS  PubMed  Google Scholar 

  25. Pacheco E, Fonseca C, Montes C, Zabaleta J, Garcia LF, Arias MA . CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol Med Microbiol 2004; 40: 207–213.

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues Jr V, Piper K, Couissinier-Paris P, Bacelar O, Dessein H, Dessein AJ . Genetic control of schistosome infections by the SM1 locus of the 5q31–q33 region is linked to differentiation of type 2 helper T lymphocytes. Infect Immun 1999; 67: 4689–4692.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007; 27: 505–517.

    Article  CAS  PubMed  Google Scholar 

  28. Rienthong D, Ajawatanawong P, Rienthong S, Smithtikarn S, Akarasewi P, Chaiprasert A et al. Restriction fragment length polymorphism study of nationwide samples of Mycobacterium tuberculosis in Thailand, 1997–1998. Int J Tuberc Lung Dis 2005; 9: 576–581.

    CAS  PubMed  Google Scholar 

  29. Manca C, Reed MB, Freeman S, Mathema B, Kreiswirth B, Barry III CE et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun 2004; 72: 5511–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tosh K, Meisner S, Siddiqui MR, Balakrishnan K, Ghei S, Golding M et al. A region of chromosome 20 is linked to leprosy susceptibility in a South Indian population. J Infect Dis 2002; 186: 1190–1193.

    Article  CAS  PubMed  Google Scholar 

  31. Fu LM . The potential of human neutrophil peptides in tuberculosis therapy. Int J Tuberc Lung Dis 2003; 7: 1027–1032.

    CAS  PubMed  Google Scholar 

  32. Peschel A, Sahl HG . The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006; 4: 529–536.

    Article  CAS  PubMed  Google Scholar 

  33. Owen HR, Elser M, Cheung E, Gersbach M, Kraus WL, Hottiger MO . MYBBP1a is a novel repressor of NF-kappaB. J Mol Biol 2007; 366: 725–736.

    Article  CAS  PubMed  Google Scholar 

  34. Rabbee N, Speed TP . A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2006; 22: 7–12.

    Article  CAS  PubMed  Google Scholar 

  35. Ruschendorf F, Nurnberg P . ALOHOMORA: a tool for linkage analysis using 10K SNP array data. Bioinformatics 2005; 21: 2123–2125.

    Article  PubMed  Google Scholar 

  36. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . GRR: graphical representation of relationship errors. Bioinformatics 2001; 17: 742–743.

    Article  CAS  PubMed  Google Scholar 

  38. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  40. Abecasis GR, Wigginton JE . Handling marker–marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 2005; 77: 754–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Browning BL . FLOSS: flexible ordered subset analysis for linkage mapping of complex traits. Bioinformatics 2006; 22: 512–513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by International Cooperation Research Grant, the Ministry of Health, Labor and Welfare from 2002 to 2004 and by a Grant-in-Aid for Scientific Research on Priority Areas ‘Comprehensive Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Ms Masako Okochi (International Medical Center of Japan) for technical support. We extend their appreciation to all of the staff and collaborators of the TB/HIV Research Project, Thailand, a collaborative research project between the Research Institute of Tuberculosis (RIT), the Japan Anti-tuberculosis Association and the Thai Ministry of Public Health for collecting the clinical information and samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Keicho.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahasirimongkol, S., Yanai, H., Nishida, N. et al. Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10, 77–83 (2009). https://doi.org/10.1038/gene.2008.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.81

Keywords

This article is cited by

Search

Quick links