Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection

Abstract

Cryptococcus neoformans is a major cause of fungal pneumonia, meningitis and disseminated disease in the immune compromised host. Here we have used a clinically relevant model to investigate the genetic determinants of susceptibility to progressive cryptococcal pneumonia in C57BL/6J and CBA/J inbred mice. At 5 weeks after infection, the lung fungal burden was over 1000-fold higher in C57BL/6J compared to CBA/J mice. A genome-wide scan performed on 210 male and 203 female (CBA/J × C57BL/6J) F2 progeny using lung colony-forming units as a quantitative trait revealed a sex difference in genetic architecture with three loci (designated Cnes1Cnes3) associated with susceptibility to cryptococcal pneumonia. Single locus analysis identified significant loci on chromosomes 3 (Cnes1) and 17 (Cnes2) with logarithm of the odds (LOD) scores of 4.09 (P=0.0110) and 7.30 (P<0.0001) that explained 8.9 and 15.9% of the phenotypic variance, respectively, in female CBAB6F2 and one significant locus on chromosome 17 (Cnes3) with a LOD score of 4.04 (P=0.010) that explained 8.6% of the phenotypic variance in male CBAB6F2 mice. Genome-wide pair-wise analysis revealed significant quantitative trait locus interactions in both the female and male CBAB6F2 progeny that collectively explained 43.8 and 19.5% of phenotypic variance in each sex, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chayakulkeeree M, Perfect JR . Cryptococcosis. Infect Dis Clin North Am 2006; 20: 507–544, v-vi.

    Article  PubMed  Google Scholar 

  2. Mitchell TG, Perfect JR . Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995; 8: 515–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Houpt DC, Pfrommer GS, Young BJ, Larson TA, Kozel TR . Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun 1994; 62: 2857–2864.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Deshaw M, Pirofski LA . Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV− individuals. Clin Exp Immunol 1995; 99: 425–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Hermoso D, Janbon G, Dromer F . Epidemiological evidence for dormant Cryptococcus neoformans infection. J Clin Microbiol 1999; 37: 3204–3209.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L, Niang R et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 2001; 107: E66.

    Article  CAS  PubMed  Google Scholar 

  7. Howard DH . The commensalism of Cryptococcus neoformans. Sabouraudia 1973; 11: 171–174.

    Article  CAS  PubMed  Google Scholar 

  8. Mirza SA, Phelan M, Rimland D, Graviss E, Hamill R, Brandt ME et al. The changing epidemiology of cryptococcosis: an update from population-based active surveillance in 2 large metropolitan areas, 1992–2000. Clin Infect Dis 2003; 36: 789–794.

    Article  PubMed  Google Scholar 

  9. Vidal SM, Malo D, Marquis JF, Gros P . Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 2008; 26: 81–132.

    Article  CAS  PubMed  Google Scholar 

  10. Lam-Yuk-Tseung S, Gros P . Genetic control of susceptibility to bacterial infections in mouse models. Cell Microbiol 2003; 5: 299–313.

    Article  CAS  PubMed  Google Scholar 

  11. Lengeling A, Pfeffer K, Balling R . The battle of two genomes: genetics of bacterial host/pathogen interactions in mice. Mamm Genome 2001; 12: 261–271.

    Article  CAS  PubMed  Google Scholar 

  12. Rhodes JC, Wicker LS, Urba WJ . Genetic control of susceptibility to Cryptococcus neoformans in mice. Infect Immun 1980; 29: 494–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Marquis G, Montplaisir S, Pelletier M, Mousseau S, Auger P . Genetic resistance to murine cryptococcosis: increased susceptibility in the CBA/N XID mutant strain of mice. Infect Immun 1985; 47: 282–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huffnagle GB, Yates JL, Lipscomb MF . T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect Immun 1991; 59: 1423–1433.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lovchik JA, Wilder JA, Huffnagle GB, Riblet R, Lyons CR, Lipscomb MF . Ig heavy chain complex-linked genes influence the immune response in a murine cryptococcal infection. J Immunol 1999; 163: 3907–3913.

    CAS  PubMed  Google Scholar 

  16. McClelland EE, Granger DL, Potts WK . Major histocompatibility complex-dependent susceptibility to Cryptococcus neoformans in mice. Infect Immun 2003; 71: 4815–4817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao X, Mednick A, Alvarez M, van Rooijen N, Casadevall A, Goldman DL . An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol 2005; 175: 3244–3251.

    Article  CAS  PubMed  Google Scholar 

  18. Huffnagle GB, Toews GB, Burdick MD, Boyd MB, McAllister KS, McDonald RA et al. Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol 1996; 157: 4529–4536.

    CAS  PubMed  Google Scholar 

  19. Huffnagle GB, Deepe GS . Innate and adaptive determinants of host susceptibility to medically important fungi. Curr Opin Microbiol 2003; 6: 344–350.

    Article  PubMed  Google Scholar 

  20. Herring AC, Lee J, McDonald RA, Toews GB, Huffnagle GB . Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infect Immun 2002; 70: 2959–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawakami K . Interleukin-18 and host defense against infectious pathogens. J Immunother (1997) 2002; 25: S12–S19.

    Article  CAS  Google Scholar 

  22. Chen GH, Olszewski MA, McDonald RA, Wells JC, Paine III R, Huffnagle GB et al. Role of granulocyte macrophage colony-stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis. Am J Pathol 2007; 170: 1028–1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huffnagle GB, Strieter RM, Standiford TJ, McDonald RA, Burdick MD, Kunkel SL et al. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J Immunol 1995; 155: 4790–4797.

    CAS  PubMed  Google Scholar 

  24. Huffnagle GB, Strieter RM, McNeil LK, McDonald RA, Burdick MD, Kunkel SL et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J Immunol 1997; 159: 318–327.

    CAS  PubMed  Google Scholar 

  25. Mody CH, Lipscomb MF, Street NE, Toews GB . Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol 1990; 144: 1472–1477.

    CAS  PubMed  Google Scholar 

  26. Lindell DM, Moore TA, McDonald RA, Toews GB, Huffnagle GB . Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection. J Immunol 2005; 174: 7920–7928.

    Article  CAS  PubMed  Google Scholar 

  27. Goldman DL, Lee SC, Mednick AJ, Montella L, Casadevall A . Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect Immun 2000; 68: 832–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huffnagle GB, Boyd MB, Street NE, Lipscomb MF . IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol 1998; 160: 2393–2400.

    CAS  PubMed  Google Scholar 

  29. Hoag KA, Street NE, Huffnagle GB, Lipscomb MF . Early cytokine production in pulmonary Cryptococcus neoformans infections distinguishes susceptible and resistant mice. Am J Respir Cell Mol Biol 1995; 13: 487–495.

    Article  CAS  PubMed  Google Scholar 

  30. Feldmesser M, Kress Y, Casadevall A . Effect of antibody to capsular polysaccharide on eosinophilic pneumonia in murine infection with Cryptococcus neoformans. J Infect Dis 1998; 177: 1639–1646.

    Article  CAS  PubMed  Google Scholar 

  31. Van Wauwe J, Aerts F, Cools M, Deroose F, Freyne E, Goossens J et al. Identification of R146225 as a novel, orally active inhibitor of interleukin-5 biosynthesis. J Pharmacol Exp Ther 2000; 295: 655–661.

    CAS  PubMed  Google Scholar 

  32. Lovchik J, Lipscomb M, Lyons CR . Expression of lung inducible nitric oxide synthase protein does not correlate with nitric oxide production in vivo in a pulmonary immune response against Cryptococcus neoformans. J Immunol 1997; 158: 1772–1778.

    CAS  PubMed  Google Scholar 

  33. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL . The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev 2007; 8: 58–69.

    Article  CAS  Google Scholar 

  34. Hernandez Y, Arora S, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB . Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. J Immunol 2005; 174: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  35. Herring AC, Falkowski NR, Chen GH, McDonald RA, Toews GB, Huffnagle GB . Transient neutralization of tumor necrosis factor alpha can produce a chronic fungal infection in an immunocompetent host: potential role of immature dendritic cells. Infect Immun 2005; 73: 39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  37. Dupuis J, Siegmund D . Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 1999; 151: 373–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Phillips TJ, Belknap JK, Hitzemann RJ, Buck KJ, Cunningham CL, Crabbe JC . Harnessing the mouse to unravel the genetics of human disease. Genes Brain Behav 2002; 1: 14–26.

    Article  CAS  PubMed  Google Scholar 

  39. Mayfield JA, Rine J . The genetic basis of variation in susceptibility to infection with Histoplasma capsulatum in the mouse. Genes Immun 2007; 8: 468–474.

    Article  CAS  PubMed  Google Scholar 

  40. Fierer J, Walls L, Wright F, Kirkland TN . Genes influencing resistance to Coccidioides immitis and the interleukin-10 response map to chromosomes 4 and 6 in mice. Infect Immun 1999; 67: 2916–2919.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tuite A, Elias M, Picard S, Mullick A, Gros P . Genetic control of susceptibility to Candida albicans in susceptible A/J and resistant C57BL/6J mice. Genes Immun 2005; 6: 672–682.

    Article  CAS  PubMed  Google Scholar 

  42. Lortholary O, Improvisi L, Fitting C, Cavaillon JM, Dromer F . Influence of gender and age on course of infection and cytokine responses in mice with disseminated Cryptococcus neoformans infection. Clin Microbiol Infect 2002; 8: 31–37.

    Article  CAS  PubMed  Google Scholar 

  43. Bruce AB . The Mendelian theory of heredity and the augmentation of vigor. Science 1910; 32: 627–628.

    Article  CAS  PubMed  Google Scholar 

  44. Strachan NJ, Watson RO, Novik V, Hofreuter D, Ogden ID, Galan JE . Sexual dimorphism in campylobacteriosis. Epidemiol Infect 2007: 1–4.

  45. Barna M, Komatsu T, Bi Z, Reiss CS . Sex differences in susceptibility to viral infection of the central nervous system. J Neuroimmunol 1996; 67: 31–39.

    Article  PubMed  Google Scholar 

  46. Satoskar A, Al-Quassi HH, Alexander J . Sex-determined resistance against Leishmania mexicana is associated with the preferential induction of a Th1-like response and IFN-gamma production by female but not male DBA/2 mice. Immunol Cell Biol 1998; 76: 159–166.

    Article  CAS  PubMed  Google Scholar 

  47. Guilbault C, Stotland P, Lachance C, Tam M, Keller A, Thompson-Snipes L et al. Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection with Pseudomonas aeruginosa in mice. Immunology 2002; 107: 297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamamoto Y, Saito H, Setogawa T, Tomioka H . Sex differences in host resistance to Mycobacterium marinum infection in mice. Infect Immun 1991; 59: 4089–4096.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Styrt B, Sugarman B . Estrogens and infection. Rev Infect Dis 1991; 13: 1139–1150.

    Article  CAS  PubMed  Google Scholar 

  50. Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P . Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci USA 2003; 100: 6610–6615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P . Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA 2001; 98: 10793–10798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006; 16: 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kreutz R, Stock P, Struk B, Lindpaintner K . The Y chromosome. Epistatic and ecogenetic interactions in genetic hypertension. Hypertension 1996; 28: 895–897.

    Article  CAS  PubMed  Google Scholar 

  54. van Ooijen JW . Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 1992; 84: 771–1022.

    Google Scholar 

  55. Broman KW . Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 2001; 30: 44–52.

    CAS  Google Scholar 

  56. Soller M, Brody T, Genizi A . On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theo Appl Genet 1976; 47: 35–39.

    Article  CAS  Google Scholar 

  57. Allcock RJ, Martin AM, Price P . The mouse as a model for the effects of MHC genes on human disease. Immunol Today 2000; 21: 328–332.

    Article  CAS  PubMed  Google Scholar 

  58. Qiu H, Wang S, Yang J, Fan Y, Joyee AG, Han X et al. Resistance to chlamydial lung infection is dependent on major histocompatibility complex as well as non-major histocompatibility complex determinants. Immunology 2005; 116: 499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Min-Oo G, Lindqvist L, Vaglenov A, Wang C, Fortin P, Li Y et al. Genetic control of susceptibility to pulmonary infection with Chlamydia pneumoniae in the mouse. Genes Immun 2008; 9: 383–388.

    Article  CAS  PubMed  Google Scholar 

  60. Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E . Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 1999; 180: 150–155.

    Article  CAS  PubMed  Google Scholar 

  61. Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M et al. Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 2003; 71: 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics (Oxford, England) 2003; 19: 889–890.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Genevieve Houde for excellent technical assistance, Sean Wiltshire for helpful assistance with the software package R/qtl, and Dr Qutayba Hamid for providing us with microscopy facilities. Grant support was provided by the Research Institute of the McGill University Health Centre, the Canadian Institutes of Health Research (SQ), a Canada Research Chair (SQ), the Career Awards in the Biomedical Sciences program of the Burroughs Wellcome Fund (SQ), the Mathematics of Information Technology and Complex Systems (MITACS) through the Canadian Network of Centres of Excellence Program (JCL-O, KM), and the National Sciences and Engineering Research Council of Canada (JCL-O).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Qureshi.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, S., Loredo Osti, J., Guillot, L. et al. Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes Immun 9, 536–545 (2008). https://doi.org/10.1038/gene.2008.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.48

Keywords

This article is cited by

Search

Quick links