Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The morphology of cataract and visual performance

Abstract

The various effects of cataract on vision are reviewed. The morphological types of senile cataract are classified into three basic categories: cortical spoke, nuclear and posterior subcapsular (PSC). The significant basic effect of cataract on the optical system of the eye is that of light scattering. Forward light scattering (light scattered towards the retina) accounts for reduced contrast sensitivity, for glare and for reduced visual acuity. Other effects of cataract are a myopic shift, a possible astigmatism change, monocular diplopia and polyopia, colour vision shift, reduced light transmission, and field of vision reduction. The effect of the various cataract morphologies on these functions is discussed. The nature of the effect varies with the degree of the cataract and with the cataract morphology. The assessment of a patient's visual disability is therefore not a simple task and cannot be based solely on the visual acuity nor on the objective measurement of the cataract.

References

  1. 1

    Brown NAP . Atlas of ophthalmology, vol 11, The lens (Spalton D, editor). London: Gower, 1983.

  2. 2

    West S, Rosenthal F, Newland HS, Taylor HR . A comparison of methods for typing and grading lens opacities for field surveys. Invest Ophthalmol Vis Sci 1985;26 (Suppl):119.

    Google Scholar 

  3. 3

    Sparrow JM, Bron AJ, Brown NAP, Ayliffe W, Hill AR . The Oxford clinical cataract classification and grading system. Int Ophthalmol 1986;9:207–25.

    CAS  Article  Google Scholar 

  4. 4

    Leske MC, Chylack LT, Khu P, Sperduto R, McKarthy D, Wu SY . Evaluation of a simple classification system based on standard photographs. Invest Ophthalmol Vis Sci 1987;28 (Suppl):323.

    Google Scholar 

  5. 5

    Sparrow JM, Ayliffe W, Bron AJ, Brown NAP, Hill AR . Inter-observer and intra-observer variability of the Oxford clinical cataract classification and grading system. Int Ophthalmol 1988;11:151–7.

    CAS  Article  Google Scholar 

  6. 6

    Brown NAP, Bron AJ, Sparrow JM . Methods for evaluation of lens changes. Int Ophthalmol 1988;12:229–35.

    CAS  Article  Google Scholar 

  7. 7

    Sparrow JM, Brown NAP, Shun-Shin GA, Bron AJ . The Oxford modular cataract image analysis system. Eye 1990;4:638–48.

    Article  Google Scholar 

  8. 8

    Harris ML, Smith GTH, Brown NAP . Inter- and intra-observer reproducibility of the new Oxford CCD Scheimpflug camera. Eye 1991;5:487–90.

    Article  Google Scholar 

  9. 9

    Sparrow JM, Hill AR, Ayliffe W, Bron AJ, Brown NAP . Human lens nuclear colour matching and brunescence grading in vivo. Int Ophthalmol 1988;11:139–49.

    CAS  Article  Google Scholar 

  10. 10

    Shun-Shin GA, Vrensen G, Brown NP, Willekens B, Bron AJ, McDonald B . Does the pathogenesis of water clefts reside in the lens fibre membrane? In: Vrensen G, Clauwaert J, editors. Topics in aging research in Europe: Eye lens membranes and aging. EURAGE 1992;15:261–71.

    Google Scholar 

  11. 11

    Brown NAP, Vrensen G, Shun-Shin GA, Willekens B . Lamellar separation in the lens: the case for fibre folds. Eye 1989;3:597–605.

    Article  Google Scholar 

  12. 12

    Bron AJ, Brown NAP . Perinuclear lens retrodots: a role for ascorbate in cataractogenesis. Br J Ophthalmol 1987;71:86–95.

    CAS  Article  Google Scholar 

  13. 13

    Shun-Shin GA, Bron AJ, Brown NAP, Sparrow JM . The relationship between central nuclear scatter and perinuclear retrodots in the human crystalline lens. Eye (in press).

  14. 14

    Elliott DB, Hurst MA, Weatherill J . Comparing clinical tests of visual loss in cataract patients using a quantification of forward light scatter. Eye 1991;5:601–6.

    Article  Google Scholar 

  15. 15

    Carter JH . The effect of aging upon selected visual functions. In: Sekuler R, Kline D, Dismukes K, editors. Aging and human visual function. New York: Alan R Liss, 1982:121–30.

  16. 16

    Spector A . Aging of the lens and cataract formation. In: Sekuler R, Kline D, Dismukes K, editors. Aging and human visual function. New York: Alan R Liss, 1982:27–43.

  17. 17

    Slataper FJ . Age norms of refraction and vision. Arch Ophthalmol 1950;43:466–81.

    Article  Google Scholar 

  18. 18

    Brown NAP, Hill AR . Cataract: the relationship between myopia and cataract morphology. Br J Ophthalmol 1987;71:405–14.

    CAS  Article  Google Scholar 

  19. 19

    Huggert A . Are the discontinuity zones of the crystalline lens iso-indicial surfaces? Acta Ophthalmol 1946;24:417–21.

    Article  Google Scholar 

  20. 20

    Koch DD . Glare and contrast sensitivity testing in cataract patients. J Cataract Refract Surg 1989;15:158–64.

    CAS  Article  Google Scholar 

  21. 21

    Elliott DB, Hurst MA, Weatherill J . Comparing clinical tests of visual function in cataract with the patient's perceived visual disability. Eye 1990;4:712–17.

    Article  Google Scholar 

  22. 22

    Elliott DB, Gilchrist J, Whitaker D . Contrast sensitivity and glare sensitivity changes with three types of cataract morphology: are these techniques necessary in clinical evaluation of cataract? Ophthalmic Physiol Opt 1989;9:25–30.

    CAS  Article  Google Scholar 

  23. 23

    Elliott DB, Gilchrist J, Pickwell LD, Sheridan M, Weatherill J, Whitaker D . The subjective assessment of cataract. Oph-thalmic Physiol Opt 1989;9:16–19.

    CAS  Article  Google Scholar 

  24. 24

    Pardhan S, Gilchrist J . The importance of measuring binocular contrast sensitivity in unilateral cataract. Eye 1991;5:31–5.

    Article  Google Scholar 

  25. 25

    Abrahamson M, Sjostrand J . Impairment of contrast sensitivity function as a measure of disability glare. Invest Ophthalmol Vis Sci 1986;27:1131–6.

    Google Scholar 

  26. 26

    Tupper B, Miller D, Miller R . The effect of a 55 nm cut-off filter on the vision of cataract patients. Ann Ophthalmol 1985;17:67–72.

    CAS  PubMed  Google Scholar 

  27. 27

    Ijspeert JK, deWard PWT, van den Berg TJTP, deJong PTVM . The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation. Vision Res 1990;30:699–707.

    CAS  Article  Google Scholar 

  28. 28

    Boettner EA, Wolter JR . Transmission of the ocular media. Invest Ophthalmol 1962;1:776.

    Google Scholar 

  29. 29

    Lerman S, Borkman RF . Spectroscopic evaluation and classification of the normal aging and cataractous lens. Ophthalmic Res 1976;8:335–53.

    Article  Google Scholar 

  30. 30

    Smith GTH, Smith RC, Brown NAP, Bron AJ, Harris ML . Changes in light scatter and width measurements from the human lens cortex with age. Eye 1992;6:55–9.

    Article  Google Scholar 

  31. 31

    Mellerio J . Yellowing of the human lens: nuclear and cortical contributions. Vision Res 1987;27:1581–7.

    CAS  Article  Google Scholar 

  32. 32

    Lyne AJ, Phillips CI . Visual field defects due to opacities in the optical media. Br J Ophthalmol 1969;53:119–22.

    CAS  Article  Google Scholar 

  33. 33

    Guthauser U, Flammer J . Quantifying visual field damage caused by cataract. Am J Ophthalmol 1988;106:480–4.

    CAS  Article  Google Scholar 

  34. 34

    Heider HW, Sees KJ, Schnaudigel OE . Cataract induced visual field changes. Klin Monatsbl Augenheilkd 1991;198:15–19.

    CAS  Article  Google Scholar 

  35. 35

    Ferris FL, Kassof A, Bresnick GH, Bailey I . New visual acuity charts for clinical research. Am J Ophthalmol 1982;94:91–6.

    Article  Google Scholar 

  36. 36

    Elliott DB, Sheridan M . The use of accurate visual acuity measurements in clinical anti-cataract formulation trials. Ophthalmic Physiol Opt 1988;8:397–401.

    CAS  Article  Google Scholar 

  37. 37

    Holladay JJ, Prager TC, Trujillo J, Ruiz RS . Brightness acuity test and outdoor visual acuity in cataract patients. J Cataract Refract Surg 1987;13:67–9.

    CAS  Article  Google Scholar 

  38. 38

    Hess R, Woo G . Vision through cataracts. Invest Ophthalmol Vis Sci 1978;17:428–35.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas A Phelps Brown.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brown, N. The morphology of cataract and visual performance. Eye 7, 63–67 (1993). https://doi.org/10.1038/eye.1993.14

Download citation

Keywords

  • Cataract
  • Visual performance

Further reading

Search

Quick links