Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

IL-33: a jack of all trades in the orchestration of respiratory antibacterial immunity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Taubenberger JK, Morens DM . 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 2006; 12: 15–22.

    Article  Google Scholar 

  2. Chien YW, Klugman KP, Morens DM . Bacterial pathogens and death during the 1918 influenza pandemic. N Engl J Med 2009; 361: 2582–2583.

    Article  Google Scholar 

  3. Ghoneim HE, Thomas PG, McCullers JA . Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J Immunol 2013; 191: 1250–1259.

    Article  CAS  Google Scholar 

  4. Sun K, Metzger DW . Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 2008; 14: 558–564.

    Article  CAS  Google Scholar 

  5. Robinson KM, McHugh KJ, Mandalapu S, Clay ME, Lee B, Scheller EV et al. Influenza A virus exacerbates Staphylococcus aureus pneumonia in mice by attenuating antimicrobial peptide production. J Infect Dis 2014; 209: 865–875.

    Article  CAS  Google Scholar 

  6. Didierlaurent A, Goulding J, Patel S, Snelgrove R, Low L, Bebien M et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008; 205: 323–329.

    Article  CAS  Google Scholar 

  7. Martin NT, Martin MU . Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016; 17: 122–131.

    Article  CAS  Google Scholar 

  8. Enoksson M, Lyberg K, Moller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C . Mast cells as sensors of cell injury through IL-33 recognition. J Immunol 2011; 186: 2523–2528.

    Article  CAS  Google Scholar 

  9. Liew FY, Girard JP, Turnquist HR . Interleukin-33 in health and disease. Nat Rev Immunol 2016; 16: 676–689.

    Article  CAS  Google Scholar 

  10. Robinson KM, Ramanan K, Clay ME, McHugh KJ, Rich HE, Alcorn JF . Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol 2017; In press.

  11. Duvigneau S, Sharma-Chawla N, Boianelli A, Stegemann-Koniszewski S, Nguyen VK, Bruder D et al. Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection. Sci Rep 2016; 6: 37045.

    Article  CAS  Google Scholar 

  12. Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminathan S, Bosnjak B et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol 2015; 16: 67–74.

    Article  CAS  Google Scholar 

  13. Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med 2012; 209: 607–622.

    Article  CAS  Google Scholar 

  14. Sanders CJ, Vogel P, McClaren JL, Bajracharya R, Doherty PC, Thomas PG . Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. Am J Physiol Lung Cell Mol Physiol 2013; 304: L481–L488.

    Article  CAS  Google Scholar 

  15. Stegemann-Koniszewski S, Jeron A, Gereke M, Geffers R, Kroger A, Gunzer M et al. Alveolar type II epithelial cells contribute to the anti-Influenza A virus response in the lung by integrating pathogen- and microenvironment-derived signals. MBio 2016; 7.

  16. Cleaver JO, You D, Michaud DR, Pruneda FA, Juarez MM, Zhang J et al. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol 2014; 7: 78–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DB is supported by the German Research Foundation (BR2221/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunja Bruder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehme, J., Bruder, D. IL-33: a jack of all trades in the orchestration of respiratory antibacterial immunity. Cell Mol Immunol 14, 875–877 (2017). https://doi.org/10.1038/cmi.2017.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2017.53

Search

Quick links